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Fig. 1. 1○We propose VisRecall++, a novel recallability dataset that contains gaze data from 40 participants
on 200 information visualisations and five recallability question types. 2○ Our analyses on VisRecall++ show
that low-level gaze features (saccade amplitude, the number of fixations, and fixation duration) significantly
differ between high and low recallability groups. Moreover, we observe significant differences in high-level
scanpath patterns, such as correct-answer scanpaths having significantly higher stationary entropy than
wrong-answer scanpaths in every question type, and considerable variability in AOI transitions. 3○ Inspired
by our findings, we propose GazeRecallNet, a light-weight method to predict fine-grained recallability from
three low-level gaze features and string-encoded scanpaths.

Question answering has recently been proposed as a promising means to assess the recallability of information
visualisations. However, prior works are yet to study the link between visually encoding a visualisation in
memory and recall performance. To fill this gap, we propose VisRecall++ – a novel 40-participant recallability
dataset that contains gaze data on 200 visualisations and 1,000 questions, including identifying the title
and retrieving values. We measured recallability by asking participants questions after they observed the
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visualisation for 10 seconds. Our analyses reveal several insights, such as saccade amplitude, number of
fixations, and fixation duration significantly differ between high and low recallability groups. Finally, we
propose GazeRecallNet – a novel computational method to predict recallability from gaze behaviour that
outperforms the state-of-the-art model RecallNet and three other baselines on this task. Taken together, our
results shed light on assessing recallability from gaze behaviour and inform future work on recallability-based
visualisation optimisation.

CCS Concepts: •Human-centered computing→ Information visualization;HCI theory, concepts and
models.

Additional Key Words and Phrases: Information visualisation, eye-tracking study, gaze behaviour, recallability,
deep learning
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1 INTRODUCTION
Effective information visualisations convey information clearly to their target users [Fekete et al.
2008; Perer and Shneiderman 2008]. While this high-level goal is easy to formulate and clear, how
to design visualisations that achieve this goal remains an open challenge [Bateman et al. 2010;
Inbar et al. 2007]. Visualisation designers commonly rely on well-established guidelines [Tufte
1985] that recommend designing information visualisations with specific characteristics, such as a
low visual density [Borkin et al. 2013] or a high data-ink ratio [Tufte et al. 1990]. However, all of
these approaches focus on characteristics of the visualisation – they do not explicitly capture the
users’ perception when looking at a visualisation. For users, a key property that designers typically
want to maximise is information recall, i.e. the challenge of making sure that users understand and
remember key information (the “take home message”) of a visualisation.
Despite its importance, few works have studied the recallability of information visualisations.

Borkin et al. [2015] have used a qualitative score assigned to self-reported user descriptions by visu-
alisation experts to quantify recallability. This approach is cumbersome and only provides a single
score representing overall recallability. Wang et al. [2022a] have introduced a question-answering
paradigm to assess both fine-grained and overall recallability by measuring the accuracy of an-
swering five different types of questions about a visualisation. The five types of questions include
identifying the theme, finding extreme values, filtering data, retrieving values, and understanding
the structure or trend. While their paradigm and dataset allowed, for the first time, to understand
how different visualisation characteristics impact users’ recall performance, they did not analyse
individual differences between users. It remains unclear why certain participants performed better
in the recallability task than others.
We fill this gap by studying the link between visual encoding of a visualisation, captured

using eye gaze data, and its impact on recall performance. In line with the recallability study
conducted byWang et al. [2022a], we first present VisRecall++ , a novel dataset of gaze data collected
from 40 participants to assess their recall performance on 200 visualisations and five question
types. Complementing gaze, we provide rich semantic annotations of the visual elements of the
visualisations, such as titles, axes, and labels. Using this dataset, we analysed the gaze behaviour
on information visualisations during the encoding stage, i.e., when viewing visualisations for 10
seconds each and trying to memorise as much as possible without knowing the question in advance.
We found that saccade amplitude, the number of fixations, and fixation duration significantly differ
between high and low recallability groups. By analysing which visual elements attracted users’
visual attention the most, we found that the stationary entropy [Krejtz et al. 2015] of scanpaths

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. ETRA, Article 239. Publication date: May 2024.

https://doi.org/10.1145/3655613


VisRecall++: Analysing and Predicting Visualisation Recallability from Gaze Behaviour 239:3

preceding a correct answer was significantly higher than those preceding a wrong one. These
individual differences suggest that eye movements are directly linked to recall performance. We
further propose GazeRecallNet , the first computational method to predict the ability of users to
answer recallability questions on information visualisations only from their scanpaths and different
low-level gaze features, such as saccade amplitudes, fixation duration, and the number of fixations.
We show that GazeRecallNet outperforms the state-of-the-art models such as RecallNet, in terms of
both overall recallability and fine-grained recallability.

As illustrated in Figure 1, the contributions of our work are three-fold:

(1) We introduce VisRecall++ , a novel recallability dataset that contains eye gaze data from 40
participants on 200 different information visualisations and five question types.

(2) We provide in-depth analyses on VisRecall++ that show how low and high-level gaze be-
haviour characteristics correlate with recall performance.

(3) We propose GazeRecallNet , the first computational method to predict recallability scores on
information visualisations only from gaze behaviour.

2 RELATEDWORK
Our work is related to previous works on 1) recallability of information visualisations, 2) gaze-based
image analysis, and 3) gaze-based cognitive state estimation.

2.1 Recallability of Information Visualisations
Recallability of information visualisations has recently become popular in the areas of cognitive
science and visualisation [Borkin et al. 2015; Kim et al. 2012, 2017; Kong et al. 2019; Wang et al.
2022a]. Previous cognitive science literature usually measures image (visualisation) memorability
by how recognisable they are [Borkin et al. 2013], that is, the tendency of visualisations for people to
remember or forget. However, only a fewworks studied the recallability of visualisations [Bainbridge
2019], which is usually measured by quantifying how much information an observer remembers
from a visualisation [Rust and Mehrpour 2020; Wang et al. 2022a] and is not necessarily related to
recognisability [Borkin et al. 2015; Wang et al. 2022a]. Keskin et al. [2023] analysed users’ attention
during visual encoding to investigate how the attention in the encoding stage is linked to the cued-
recall performance on 2Dwebmaps. Borkin et al. [2015] proposed quantifying recallability by asking
visualisation experts to assign a qualitative score to self-reported free-text descriptions from the
observers. However, this approach is cumbersome and only provides an ordinal score representing
overall recallability while hiding the contribution of individual visualisation characteristics. More
recently, Wang et al. [2022a] introduced a question-answering paradigm to assess the recallability
of information visualisations. Their approach measures recallability as the accuracy of answering
questions about visualisations. They also proposed a computational method, RecallNet, to predict
recallability from visual properties of visualisations. While promising, their work neglected to
study the encoding stage and its importance for recallability, i.e. how observers look at visual
elements of visualisations and how this process of visual inspection links to recallability. We fill this
gap by introducing a new recallability dataset that offers gaze data. This provides an opportunity
to analyse and understand how visualisations are visually encoded, if and how their properties
influence recallability, and to predict recallability from gaze behaviour.

2.2 Gaze-based Image Analysis
Eye tracking technology has received increasing attention from computer vision and cognitive
science researchers and has become a powerful tool for image analysis and understanding. Pio-
neering works have studied how eye fixations are linked to memory for pictures [Christianson
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et al. 1991; Loftus 1972]. More recently, gaze stationary entropy [Krejtz et al. 2015] quantifies
the randomness and complexity of a person’s eye movements while observing artworks. Scan-
paths capture the spatiotemporal attention in an image and have been widely used to analyse
images [Jiang et al. 2015], videos [Hu et al. 2021], webpages [Drusch et al. 2014], mobile user
interfaces [Jokinen et al. 2020], as well as 3D virtual environments [Hu 2020]. Gazealytics [Chen
et al. 2023b] is an eye-tracking analytics tool that unifies spatiotemporal exploration of fixations
and scanpaths for various analytical tasks. Scanpath scarf plots summarise scanpath dynamics
between AOIs [Blascheck et al. 2014]. A body of work has used the visual toolkit for exploratory
scanpath and comparative gaze metrics analysis [Chen et al. 2023a], interactive data annotations
with AOIs and data analysis [Cai et al. 2022; Pozdniakov et al. 2023]. In the area of information
visualisation, gaze-based AOI analysis has been used to understand how people explore visuali-
sations or assess the quality of visualisations [Borkin et al. 2015; Burch et al. 2017; Polatsek et al.
2018; Wang et al. 2023, 2022b]. However, despite the potential of the human eye gaze for analysing
visualisations, little attention has been paid to specifically analysing the link between eye gaze and
recall performance of information visualisations. We fill this gap by recording human gaze data
in the context of recalling visualisations, allowing us to link eye gaze, visualisation elements, and
recallability.

2.3 Gaze-based Cognitive State Estimation
Numerous studies in eye tracking research and cognitive science have revealed that human eye
movements can provide insights into human cognitive behaviour [Bulling and Roggen 2011; Bulling
and Zander 2014], and this has inspired a growing number of researches in gaze-based cognitive
state estimation [Hu et al. 2021; Pfleging et al. 2016; Wang et al. 2019]. Specifically, Pfleging et al.
[2016] proposed to estimate users’ cognitive load by measuring users’ pupil diameters under various
controlled lighting conditions. Sattar et al. [2020] predicted user search intents using human gaze
fixations, while Lethaus et al. [Lethaus et al. 2013] inferred driver intent using eye gaze features.
Strohm et al. [2021] introduced a method to reconstruct mental images from eye movements visually.
David et al. [2019] predicted artificial visual field losses from eye gaze features using Hidden Markov
Models and recurrent neural networks. Previous works have also estimated participants’ levels of
text comprehension [Ahn et al. 2020] and mind-wandering tendencies [Huang et al. 2019; Zermiani
et al. 2022] from their eye movements. In addition, an increasing number of researchers have
studied the correlations between human eye movements and tasks and proposed many successful
gaze-based task recognition methods [Boisvert and Bruce 2016; Braunagel et al. 2017; Hild et al.
2018; Hu et al. 2021]. Complementing these prior works, we focus on the problem of predicting
recallability from human eye movements.

3 VisRecall++ Dataset
To investigate the link between participants’ gaze behaviours and their recall of content from
information visualisations, we propose the VisRecall++ – a novel dataset that contains eye gaze
data from 40 participants on 200 information visualisations for five recallability question types.
Our dataset and code are publicly available at https://doi.org/10.18419/darus-3138.

3.1 Data Collection
Stimuli. We used the 200 information visualisations from the VisRecall dataset [Wang et al.

2022a] as stimuli aligning with the prior work. The selection covers a variety of frequently used
information visualisations, including 56 bar plots, 45 line plots, 27 scatter plots, 22 pie plots, 25
tables, and 25 complex visualisations (e.g. box charts and isotype charts). Figure 2 shows a sample
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Annotation Graphic Title Paragraph Source Label Data

8.81 seconds, R: 0.58
7.35 seconds, R: 0.26

Fig. 2. Sample annotated AOIs and scanpaths from two participants overlaid on the same visualisation from
VisRecall++ . The participant with the blue scanpath had a recallability score of 0.58 while the participant
with the yellow scanpath had a recallability score of 0.26. For recallability, higher is better and a score of 1.0
indicates correctly answering all questions.

visualisation of VisRecall++ in a sample web application. We used all 1,000 recallability questions
in five question types from VisRecall [Wang et al. 2022a] to collect gaze data.

The question types are:
• Identify the title or theme (T-question): T-questions require participants to identify the title
or the general theme of the corresponding visualisation and are used to test participants’
ability to recall the general story of visualisations [Borkin et al. 2015]. Examples: What is the
theme of the visualisation? What is the title of the visualisation?

• Find extreme values (FE-question): FE-questions ask participants to find certain extreme
values in the visualisation and are used to measure participants’ low-level recall ability of
the stimuli [Polatsek et al. 2018; Schulz et al. 2013]. Examples: Which particle is the latest
discovered? Which area had the lowest level of urbanisation in 1950?

• Filter data elements (F-question): F-questions request participants to filter data elements
based on some specific criteria and are used to calculate participants’ ability to recall multiple
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elements in the stimuli [Kim and Heer 2018; Polatsek et al. 2018]. Examples:Which particle is
Bosons? What is the source of the data?

• Retrieve values (RV-question): RV-questions require participants to retrieve the value for a
specific visual element and are utilised to evaluate participants’ recall of detailed information
in the visualisations [Kim and Heer 2018; Polatsek et al. 2018]. Examples: What percentage of
Indians are expected to live in urban areas by 2045? What is the maximum percentage of aid
allocated?

• Understand the structure or trend (U-question): U-questions ask participants to understand
the structure or the trend of the visualisation [Schulz et al. 2013] and are used to quantify
participants’ high-level recall ability of the visualisation [Chaudhry et al. 2020; Methani et al.
2020]. Examples: What decreases as time goes by? What does the purple curve represent?

VisRecall++ includes 196 T-questions, 302 FE-questions, 276 F-questions, 125 RV-questions, and
101 U-questions. Each visualisation has five associated questions, containing at least two different
question types. Each question has four possible answer options, and only one option is correct.

Apparatus. Gaze data for VisRecall++was collected using an EyeLink 1000 Plus eye tracker run-
ning at 2,000Hz in binocular mode, providing an accuracy of 0.5◦ under proper calibration [Ehinger
et al. 2019]. Information visualisations were presented on a 24.5" monitor with a resolution of
1920 × 1080 pixels at 90 cm from the participant using a high-performance desktop computer.
Visualisations were shown in the screen centre, covering a visual angle of around 21.1◦ × 14.8◦. Par-
ticipants used a desk-mounted chin rest to minimise the influence of head movements on gaze data
quality. We used the JavaScript-based web application provided by the authors of VisRecall1. The
web application runs in a browser in full-screen mode and is embedded in the WebLink recording
software provided by the manufacturer2.

Participants. We recruited 43 participants from the local university3. Three participants quit the
experiment due to a self-reported lack of visual literacy. The final participants are 15 females and
25 males. No participants are colour-blind. All participants reported normal or corrected-to-normal
vision and were aged between 19 and 32 years (` = 24.7, 𝜎 = 2.2), with an English level of C1 or
better. They were compensated for their participation for $15 per hour and could stop without
adverse consequences. All personal information was fully pseudonymised.

Experimental Design. The 200 visualisations were randomly divided into 10 trials based on the
original split of VisRecall [Wang et al. 2022a], where each trial contains 20 visualisations. Each trial
takes approximately 20 to 25 minutes to complete. Each participant randomly took 2 to 6 trials.
We ensured that each visualisation was observed by at least 12 participants (` = 15.8, 𝜎 = 1.08). We
limited participants to a maximum of three trials in one day.

Procedure. Prior to the study, we provided participants with a comprehensive explanation of
the various question types. We used the question-answering paradigm proposed in [Wang et al.
2022a] to quantify participants’ recallability of information visualisations, following the two-by-
two setting [Wang et al. 2022a] for demonstrating visualisations to reduce the effect of working
memory [Owen et al. 2005]. Specifically, in the encoding stage, we showed two information
visualisations sequentially to the participants, each for 10 seconds. The observation duration
aligns with prior work [Borkin et al. 2013; Wang et al. 2022a]. We then sequentially presented
the questions regarding the two visualisations in the recall stage, i.e. five questions for the first

1https://doi.org/10.18419/darus-2826
2https://www.sr-research.com/weblink/
3The university ethics committee approved our study prior to data collection.
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visualisation and then five questions for the second visualisation. The questions were displayed
sequentially with the blurred visualisation next to the question in the recall stage. After answering
one question, participants had to click a button to proceed, and they could not return to previous
questions. During the experiments, participants’ eye gaze data and their answers to the questions
were recorded for further analysis.

Table 1. The number and percentage of correct and incorrect answers for each question type (overall, T-, FE-,
F-, RV-, and U-questions).

Groups Overall T FE F RV U

Correct 5,574 (45%) 1,593 1,644 1,273 494 569
Incorrect 6,801 (55%) 847 2,146 2,097 1,014 678

Total 12,375 2,440 (20%) 3,790 (31%) 3,370 (27%) 1,508 (12%) 1,247 (10%)

3.2 Data Processing
Area of Interest (AOI) Annotation. To analyse the correlations between recallability scores and the

visual elements inspected by the participants, we recruited three scientific researchers with more
than three years of experience in information visualisation. They first independently annotated
the areas of interest (AOIs) for all 200 visualisations and were then asked to discuss and reach a
consensus on which areas represent AOIs. We divided all elements containing texts [Borkin et al.
2015] into Labels, Titles, Paragraphs, and Sources. We used a single area in one visualisation to
annotate Data, such as including all bars in a bar graph or all points in a scatterplot. The hierarchical
order of bounding boxes from high to low is defined as Annotations (annotated visual elements),
Axes (axis location, including tick marks and numeric values), Graphical Elements (non-data-related
visual elements), Legends (data visual encoding explanations), Objects (human recognisable objects),
Titles, Paragraphs, Sources, Labels, Data. In total, we collected 996 Labels, 338 Data, 283 Axes, 199
Titles, 180 Paragraphs, 156 Sources, 105 Legends, 104 Annotations, 92 Graphical Elements, and 36
Objects [Borkin et al. 2015]. See Figure 2 and Figure 4 for the annotated AOIs overlaid on sample
visualisations from VisRecall++ , and supplementary material for more examples.

Gaze Data Processing. We detected eye fixations using the Identification by Dispersion-Threshold
(IDT) algorithm [Salvucci and Goldberg 2000] in the EyeLink software with velocity and acceleration
thresholds of 30◦/𝑠 and 8000◦/𝑠2, respectively. Since each visualisation was shown for 10 seconds,
we identified those scanpaths with a total fixation time (duration) shorter than 2 seconds as outliers
and discarded those scanpaths. We further calculated the Hit-Any-AOI Rate (HAAR) [Wang et al.
2022b] to check the quality of the scanpaths, and removed the scanpaths whose HAAR was less
than 0.5. This resulted in a mean HAAR for our dataset of 0.827, which indicates a good quality
of gaze data [Wang et al. 2022b]. See supplementary material for further details on the gaze data
processing procedure.

4 DATA ANALYSIS
Since several studies have demonstrated that human eye movements can provide insights into
human cognitive behaviour [Bulling and Roggen 2011; Bulling and Zander 2014], we analysed the
link between human gaze behaviour and recallability of information visualisations. Specifically, we
analysed the characteristics of three low-level gaze features (saccade amplitudes [Baloh et al. 1975],
number of fixations [Loftus and Mackworth 1978], and fixation duration [Baloh et al. 1975; Loftus
and Mackworth 1978]) and scanpath patterns on AOIs.
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4.1 Recallability Group Separation
To analyse how observers visually process the recallability questions, we first split the participants’
gaze data according to the question type and correctness of the answer. As each answer corresponds
to a scanpath, we created subsets of scanpaths preceding correct answers and wrong answers from
participants, denoted as correct-answer scanpaths and wrong-answer scanpaths. Since each trial
presented different images and questions, we further divided participants into a high and a low
recallability group based on the mean recallability of each trial. The separation of high recallability
and low recallability groups is for understanding how observers’ gaze features are correlated with
recallability in subsequent sections. See supplementary material for additional statistics on these
two participant groups.

4.2 Dataset Statistics
VisRecall++ contains 2,475 valid scanpaths with 12,375 answers (each scanpath corresponds to
exactly 5 answers) from 40 participants. The scanpaths in VisRecall++ have a mean recording
duration of 7.17 seconds (𝜎 = 1.67 s). The scanpaths have a mean length of 32.37 fixations (𝜎 = 8.29
fixations) with a mean fixation duration of 222 milliseconds (𝜎 = 132ms), and a mean saccade
amplitude of 3.47◦ (𝜎 = 3.63◦). Each question, offering four options, presents a baseline accuracy of
25% by random chance alone. As shown in Table 1, Despite an overall correctness rate of 45.0%, 20%
surpassing random chance, most questions were answered incorrectly. Questions involving general
or extreme information, such as theme identification (T-question), were answered correctly at a
rate of 65.3%, contrasting with lower rates for detailed tasks like data element filtering (F-question)
at 37.8%. This trend underscores the ease of perceiving general or extreme information compared
to more intricate details, as indicated by varying correctness rates across question types.

4.3 Low-level Gaze Features
To understand how eye gaze events (fixations and saccades) are linkedwith recallability, we analysed
three low-level gaze features:

Number of fixations. We first compared the number of fixations in scanpaths between the high
and low recallability groups. The mean number of fixations in the high recallability group was
33.09 (𝜎 = 8.34) and 31.45 (𝜎 = 8.15) in the low recallability group. This difference was statistically
significant in a Student’s T-test as t (2,570) = 5.014, p < 0.001.

Fixation Duration. Fixations in the correct-answer scanpaths had a mean duration of 219.51ms
(𝜎 = 129.60ms) and the low recallability group has amean fixation duration of 226.29ms (𝜎 = 134.19ms).
Statistical significance was found as t (83,262) = 7.352, p < 0.001.

Saccade Amplitude. Finally, we calculated the saccade amplitudes for each group as the Euclidean
distances between subsequent fixations in degrees of visual angle. The mean saccade amplitude in
the high recallability group was 3.53◦ (𝜎 = 3.69◦), and 3.40◦ (𝜎 = 3.56◦) in the low recallability group.
Statistical significance was found as t (80,690) = 4.853, p < 0.001.

4.4 Scanpath Patterns
Visual elements (AOIs)-based visual analysis is a widely used approach in information visualisation
research to analyse scanpath patterns [Borkin et al. 2015; Polatsek et al. 2018; Wang et al. 2022b]. We
performed two analyses to understand the semantics of scanpaths, i.e. how the viewing behaviour
on AOIs is linked to recallability. Stationary entropy [Krejtz et al. 2015] focuses on attention
distribution among AOIs while scanpath scarf plot [Stellmach et al. 2010] illustrates qualitative
gaze transitions.
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Fig. 3. The normalised mean gaze stationary entropy [Krejtz et al. 2015] of correct-answer and wrong-answer
scanpaths in every recallability question type (T-, FE-, F-, RV-, and U-questions). Error bars indicate the
standard error. The stationary entropy of correct-answer scanpaths in all question types is significantly lower
than wrong-answer scanpaths.

Stationary Entropy. Gaze stationary entropy [Krejtz et al. 2015] is a metric to quantify how
equally attention is distributed among AOIs. The normalised stationary entropy ranges from 0 to 1,
and a higher value means that the subject distributes their visual attention more equally among
AOIs. We analysed the gaze stationary entropy of the correct-answer and wrong-answer scanpaths.
The stationary entropy of correct-answer scanpaths in all question types is significantly lower than
wrong-answer scanpaths (see Figure 3): t (2,492) = 3.866, p < 0.001 for T-questions, t (3,851) = 3.813,
p < 0.001 for FE-questions, t (3,443) = 4.000, p < 0.001 for F-questions, t (1,536) = 3.138, p < 0.001 for
RV-questions, t (1,313) = 3.779, p < 0.001 for U-questions, respectively.

Scanpath Scarf Plot. After assigning a unique colour to each type of AOI, the scanpaths can be
visualised as scarf plots. The lengths represent the sum of fixation durations, and colour changes
represent attention shifts between AOIs. Figure 4 showcases two examples from VisRecall++ , each
divided into groups of high and low recallability. The visualisations include fixation contours in the
form of Bell Curves, scanpath scarf plots, and tables displaying the percentage fixation duration.
The scanpaths with high recallability have a shorter percentage dwell time on Data (𝐷), and a longer
percentage dwell time on Axes (𝑋 ) and Legends (𝐿) for all two examples. Additionally, the high
recallability group usually has a longer scarf, indicating a longer total fixation time, which agrees
with our finding in subsection 4.3. Moreover, the high recallability group generally has a lower
percentage dwell time on Data (D), and a longer percentage dwell time on Axes (X) and Legends (L).
This visualisation was created using Gazealytics4 [Chen et al. 2023b]. See supplementary material
for more examples.

4https://github.com/gazealytics/gazealytics-master
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Axis Title Paragraph Source Label Data

High Recallability 10.8 18.3 13.5 10.0 7.6 38.7

Low Recallability 7.6 21.2 7.6 3.8 13.1 51.3

Axis Legend Title Paragraph Label Data

High Recallability 11.5 24.9 27.5 4.6 0.9 19.3

Low Recallability 6.9 16.9 26.2 5.0 4.8 29.3

Axis Legend Title Paragraph Source Label Data

High Recallability 11.2 8.6 43.6 3.1 1.8 0.5 39.0

Low Recallability 10.0 7.7 29.5 10.3 0.8 0 50.7

High Recallability Group Low Recallability Group

High Low 

Axis 10.8 7.6

Title 18.3 21.2

Paragraph 13.5 7.6

Source 10.0 3.8

Label 7.6 13.1

Data 38.7 51.3

High Low 

Axis 11.5 6.9

Legend 24.9 16.9

Title 27.5 26.2

Paragraph 4.6 5.0

Label 0.9 4.8

Data 19.3 29.3

High Low 

Axis 11.2 10.0

Legend 8.6 7.7

Title 43.6 29.5

Paragraph 3.1 10.3

Source 1.8 0.8

Label 0.5 0

Data 39.0 50.7

b

c

b

a

a

Fig. 4. Two examples from VisRecall++ , each divided into groups of high and low recallability group. The
visualisations included a○ fixation contours (Bell Curve), b○ scanpath scarf plots, and c○ tables displaying
percentage fixation duration.

5 GazeRecallNet
The findings in Section 4 demonstrate a link between human gaze behaviour and recallability of
information visualisations, raising the question of whether recallability of information visualisation
can be predicted from gaze behaviour. To this end, we propose GazeRecallNet – a predictive model
designed for fine-grained recallability prediction on five question types. Figure 5 shows an overview
of our GazeRecallNetmodel. Given the three low-level eye gaze features of the scanpath (the
number of fixations, saccade amplitudes, and fixation durations) and the string-encoded scanpaths,
i.e., the string representing the sequence of AOI annotations as described in subsection 3.2, the
model predicts whether a given scanpath can lead to a correct answer to recallability questions.

5.1 Gaze Encoding
We encode gaze features and string-encoded scanpaths into embedding vectors and concatenate
them to form a single gaze embedding vector. It is then fed into a network to predict the accuracy
of responses to the recallability questions.

Gaze Features. The lengthiest scanpath in our dataset includes less than 80 fixations. Thus, we
encode employ a trainable parametric matrix of size 80 × 64 to encode the number of fixations.
The matrix maps the number of fixations to a 64-dimensional vector. To represent the sequence of
saccade amplitudes and fixation durations, we use gated recurrent unit networks (GRUs) [Cho et al.
2014] to encode them, resulting in 64-dimensional vectors as their embeddings respectively. We
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MLPString-Encoded Scanpaths

Fixation Durations

Trainable Matrix

Embedding

GRU

GRU

BERT

Saccade Amplitudes

Number of Fixations

> 0

< 0

Gaze 
Features

Can the scanpath 
lead to a correct 
answer?

Fig. 5. Overview of GazeRecallNet . Three low-level gaze features (the number of fixations, saccade amplitudes,
and fixation durations) and string-encoded scanpaths are encoded in parallel. All the gaze feature embeddings
are concatenated to train a classifier to predict whether an observer can correctly answer a recallability
question.

chose GRUs since they are empirically superior to process sequential and temporal data, which is a
common choice in encoding gaze features [Palmero et al. 2018; Park et al. 2020].

String-encoded Scanpaths. Our analysis in Figure 3 demonstrates that the specific scanpath
patterns on visual elements during the encoding stage correlated with the recallability scores in
the recall stage. Therefore, we assigned each fixation a character to represent the AOI it landed on,
resulting in string-encoded scanpaths [Bulling and Roggen 2011; Wang et al. 2022b]. For instance,
“D” denotes data, “L” represents labels, and “T” signifies titles. Consecutive fixations on the same
type of AOIs are counted only once. The number of fixations in the resulting scanpaths ranges from
2 to 25. To represent these string-encoded scanpaths, we use the pre-trained bidirectional encoder
representations from transformers (BERT) [Devlin et al. 2019] to generate a 768-dimensional
embedding vector. BERT has been widely applied in language understanding tasks ranging from
textual classification [Sun et al. 2019] to reading comprehension [Xu et al. 2019] and can generate
embeddings for scanpath strings of an arbitrary length.

5.2 Recallability Prediction
We concatenated all the generated gaze features and scanpath embedding to form the gaze embed-
ding, which is fed into a three-layer perceptron (MLP) model for training a classifier for predicting
the accuracy of responses to recallability questions. MLPs are known for their simplicity and effec-
tiveness in regression tasks, particularly when handling gaze data [Jiao et al. 2023; Zhang et al. 2017].
We apply the binary cross entropy loss (BCE Loss) during training to classify recallability questions
as answerable or unanswerable — where a positive output means the answer was predicted to be
correct, otherwise wrong.

6 EXPERIMENT RESULTS
We conducted a series of experiments to compare the performance of GazeRecallNetwith recalla-
bility prediction methods on VisRecall++ . Different ablated versions of the GazeRecallNetwere
also evaluated.

6.1 Training Details
As described in subsection 4.4, we discarded all fixations that did not land on any AOIs and removed
repeating characters in the string-encoded scanpaths. To train our GazeRecallNet to predict fine-
grained recallability scores for a certain question type, we only used those scanpaths that have
proceeded at least one question for that question type. There are 2440, 3790, 3370, 1508, and 1247
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scanpaths for T-, FE-, F-, RV-, and U-question, respectively (see Table 1). We did a five-fold cross-
validation for a training and testing set of VisRecall++ in every question type across visualisations.
In each fold, we did cross-participant separation; that is, all data from a single participant are in
either training or testing set. GazeRecallNetwas trained for 50 epochs with the Adam [Kingma
and Ba 2015] optimiser with a learning rate of 1𝐸 − 4 [Fosco et al. 2020]. All experiments were
conducted on a single NVIDIA GeForce RTX 2060 Super GPU with 8GB VRAM.

6.2 Baseline Methods and Evaluation Metrics
Baseline Methods. The only method that predicts visualisation recallability is the RecallNet [Wang

et al. 2022a]. Besides, we created three simple but effective baselines: CoordLSTM, a Mean, and a
Random predictor. The descriptions of all baselines are as follows:

• RecallNet [Wang et al. 2022a] aims at predicting recall accuracy using a visualisation as input
and predicts one recallability score independent of the user.

• We designed CoordLSTM as a one-layer Long Short-Term Memory (LSTM) [Hochreiter and
Schmidhuber 1997] model with 16 hidden neurons that predicts the recallability score with
scanpath coordinates as input. We opted to include it here given the recent success of LSTMs
for a range of sequential modelling tasks, such as scanpath prediction [Chen et al. 2021] or
encoding video frames [Xu et al. 2018].

• The Mean predictor calculates the mean recallability score of every question type in the
training set, then uses this value as the probability of predicting the answer to be correct.

• The Random predictor predicts randomlywhether an observer will answer a question correctly
or incorrectly.

Evaluation Metrics. We compute the accuracy of recallability questions by
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
,

where𝑇𝑃 and𝑇𝑁 represent the right predictions of correct and wrong answers, respectively, while
𝐹𝑃 and 𝐹𝑁 represent wrong predictions of correct and wrong answers, respectively. The overall
accuracy was computed as the average accuracy of all question types, weighted by the distribution
of the number of test samples in each question type.

6.3 Model Evaluation
Table 2 shows the overall and fine-grained recallability accuracy of GazeRecallNet and four base-
lines: RecallNet [Wang et al. 2022a], CoordLSTM, a Mean, and a Random predictor. GazeRecallNet
outperformed all four baselines for recallability prediction on every question type. Our model
reached 63.0% prediction accuracy in terms of the overall recallability prediction compared to the
baselines (46.1% for RecallNet, 60.8% for CoordLSTM, 53.2% for theMean, 50.5% for the Random pre-
dictor), and reached state-of-the-art performance for every fine-grained recallability prediction task
(T-, FE, F, RV-, and U-questions). Moreover, GazeRecallNet has only 236,641 trainable parameters,
compared to 25,592,362 trainable parameters for RecallNet.

6.4 Ablation Study
We further carried out an ablation study to investigate how each branch inGazeRecallNet contributes
to overall and fine-grained recallability (see Table 3). We first evaluated the model by removing the
string-encoded scanpaths (the second row) and all the low-level gaze features, i.e. the number of
fixations, fixation durations, and saccade amplitudes (the third row). Even when AOI information
is unavailable (w/o scanpaths), our method still achieves close-to-top performance in terms of
overall accuracy (61.7% vs 63.0%). To evaluate the importance of each gaze feature, we removed
each feature from the training process (the last three rows). Removing any gaze feature reduced
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Table 2. Accuracy of fine-grained recallability on VisRecall++ under five-fold cross-validation evaluation
across visualisations, reported in mean and standard deviation (%). The best results of each recallability
question type are shown in bold.

Methods Overall T FE F RV U

GazeRecallNet (ours) 63.0 (2.0) 66.4 (5.0) 58.7 (2.2) 62.3 (2.3) 67.3 (2.0) 58.8 (3.1)
RecallNet 46.1 (1.9) 64.6 (6.2) 43.8 (3.2) 38.8 (1.5) 32.8 (2.1) 51.9 (1.3)

CoordLSTM 60.8 (1.9) 65.8 (5.3) 54.7 (3.1) 59.7 (1.6) 64.9 (3.7) 54.3 (4.8)
Mean 53.2 (1.0) 55.2 (1.5) 51.5 (1.7) 52.7 (2.1) 57.1 (2.9) 51.8 (3.1)

Random 50.5 (0.8) 50.9 (1.4) 50.4 (1.7) 49.5 (1.3) 51.8 (2.2) 51.0 (3.8)

Table 3. GazeRecallNet ablation study, reported in mean and standard deviation of recallability accuracy
(%). The three gaze features are denoted as NF: number of fixations, FD: fixation duration, and SA: saccade
amplitudes.

Methods Overall T FE F RV U

Full Model 63.0 (2.0) 66.4 (5.0) 58.7 (2.2) 62.3 (2.3) 67.3 (2.0) 58.8 (3.1)
w/o scanpaths 61.7 (2.4) 65.8 (5.3) 54.9 (2.6) 62.2 (2.3) 67.2 (2.1) 55.1 (2.7)
w/o NF, FD, SA 62.0 (2.2) 65.8 (5.3) 56.3 (3.1) 62.2 (2.3) 67.2 (2.1) 55.0 (3.5)

w/o NF 62.3 (2.1) 65.8 (5.3) 57.4 (2.5) 62.2 (2.3) 67.2 (2.1) 56.2 (3.4)
w/o FD 61.9 (2.0) 64.7 (3.8) 56.8 (2.3) 62.1 (2.4) 67.2 (2.1) 57.1 (2.0)
w/o SA 62.0 (2.4) 65.8 (5.3) 57.1 (2.5) 62.0 (2.0) 67.2 (2.1) 56.2 (2.6)

the overall recallability prediction accuracy for the number of fixations to 62.3%, fixation durations
to 61.9%, and saccade amplitudes to 62.0%. Results demonstrate that all gaze features contribute to
the full model.
In a nutshell, this section demonstrates the superiority of GazeRecallNet over four baseline

methods in predicting recallability scores across various question types on VisRecall++ . The results
highlight the robustness and effectiveness of GazeRecallNet in predicting fine-grained recallability.

7 DISCUSSION
Understanding the link between visually encoding a visualisation and the ability to recall details
from memory afterward is essential and lays the foundation not only for understanding human
behaviours, i.e. whether certain viewing behaviour is an “optimal” strategy for remembering better,
but also for potentially optimising visualisations for increased recallability. Toward this goal, our
work proposed several original contributions.

7.1 Recallability Dataset with Gaze Data
Given that there was no suitable dataset to study the link between recallability and gaze features in
the encoding stage, we proposed VisRecall++ – a novel dataset that contains 2,475 scanpaths from
40 participants in 5 recallability question types. Using VisRecall++ , we identified several findings
that link gaze features in the encoding stage of visualisation in memory to correct or incorrect recall
afterwards. As noted in subsection 4.3, there were statistically significant differences between the
high and low recallability groups regarding the three low-level gaze features: number of fixations,
fixation duration, and saccade amplitude. When only using these three gaze features as input to
the model, the overall accuracy of our method only decreases from 63.0% to 61.7% (w/o scanpaths,
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see Table 3). This finding underlines the strong link between these low-level gaze features and
recallability. When analysing high-level scanpath patterns, we also found a significant difference in
stationary entropy between the different question types (see Figure 3). This suggests that the way
users explored the visualisations significantly differed between high and low recallability groups:
The scarf plots shown in Figure 4 qualitatively illustrate that the high recallability group distributed
their visual attention more equally among AOIs. In contrast, the low recallability group focused
more on Data and Titles. This indicates that some specific gaze patterns may be beneficial for recall
performance.
Taken together, these differences point towards differences in encoding “strategy”, i.e. how

humans encode information in memory, and may lead to applications that teach users how to
improve their encoding ability and, consequently, recallability. Our VisRecall++ enables future work
to link top-down recallability with bottom-up visual saliency of the information visualisations.
Given the detailed AOI annotations and the corresponding gaze data that VisRecall++ provides,
future work could investigate whether and how saliency contributes to visual encoding abilities.

7.2 Predicting Recallability from Gaze
Building on our analyses (subsection 4.3, subsection 4.4) that demonstrated a strong link between
gaze features and recall performance, we proposed GazeRecallNet – a computational method for
gaze-based recallability prediction, that is, the task of predicting whether a question will be an-
swered correctly or not only from gaze features and scanpaths. While earlier work [Wang et al.
2022a] has relied only on image features, thus ignoring differences in user behaviour, our Gaz-
eRecallNet leverages gaze features (scanpath length, saccade amplitude, and fixation duration)
and scanpaths that encode the semantic meaning of different visualisation elements. Our experi-
ments showed that our method achieved state-of-the-art performance on fine-grained recallability
prediction (see Table 2). RecallNet [Wang et al. 2022a] was en par with our model only for pre-
dicting T-question recallability. For all other question types, performance was below even the
naïve baselines. We also compared GazeRecallNetwith a model that instead used the scanpath
coordinates as input (CoordLSTM). Results showed that our approach was still the best-performing
one, highlighting the importance of AOI and semantic scanpaths rather than absolute fixation
locations.

Furthermore, our ablation study demonstrated that removing any component from our combina-
tion of gaze features reduces the prediction accuracy in both overall and fine-grained recallability.
This underlines the importance of combining scanpaths and low-level gaze features to achieve high
performance in recallability tasks: While string-encoded scanpaths capture content-based semantics,
focusing on transitions across AOI types, low-level gaze features capture individual details of eye
movement behaviour. Finally, the previous RecallNet [Wang et al. 2022a] used a pre-trained image
encoder for classification. In stark contrast, GazeRecallNet does not require encoding of image
features, thus resulting in a light-weight model with only 135,233 trainable parameters vs 25,592,362
for RecallNet.

7.3 Limitations
The ability to accurately recall information from memory in our study may not only have been
influenced by the visualisations or gaze patterns but also by other characteristics, such as par-
ticipants’ personal experience and working memory capacity [Unsworth et al. 2010]. To reduce
such influences, our work specifically focused on short-term recallability, and each trial involved
encoding two visualisations before assessing the users’ recall using multiple-choice questions. This
study design followed the prior work [Wang et al. 2022a] that showed that two visualisations in
the encoding stage were appropriate for the question-answering (QA) paradigm. Moreover, the
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dataset is not classified according to its recallability before the experiment. Therefore, the difficulties
across experimental trials varied and might be a confound to the visualisation recallability. The
participants’ English fluency is another confound. The study required participants to be proficient
in English and, as such, there could have been differences between native vs non-native speakers.
We addressed this by only recruiting participants who reported at least an English level of C1 in
the Common European Framework of Reference for Languages. Still, more English native speakers
in future studies would likely further reduce this influence. Lastly, our dataset has an uneven
distribution of participants, including 15 females and 25 males. Future research could explore how
gender bias, such as potential differences in memory retention between females and males, may
impact the model’s generalisability.

7.4 Privacy and Ethics Statement
The ethical approval of this study was obtained from the University’s Ethics Committee. Data was
collected with pseudonymisation of personal data and secure encryption of data storage systems.
Access to the data is restricted to the research team and is used exclusively for this study. Plans for
data sharing are designed to respect consent terms and privacy standards, ensuring any future use
aligns with the same ethical approval.

8 CONCLUSION
In this work, we introduce VisRecall++ – a novel recallability dataset that contains gaze data
from 40 participants on 200 visualisations and five question types. Our analyses show statistically
significant differences between high and low recallability groups regarding low-level and high-level
gaze features. Inspired by our findings, we then propose GazeRecallNet, a novel method to predict
recallability from scanpaths and gaze features. Extensive experiments on VisRecall++ show that
our method outperforms several baselines in overall and fine-grained recallability prediction. As
such, our work sheds light on assessing recallability from gaze behaviour and informs future work
on enhancing recallability through the optimisation of information visualisations.
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