

Towards the Coordination of Eye, Body and Context in Daily Activities

Research Talk

Zhiming Hu January 2, 2024

Perceptual User Interfaces Group, University of Stuttgart Computational Biophysics and Biorobotics Group, University of Stuttgart Stuttgart Center for Simulation Science (SimTech)

Personal Introduction

Research Statement

1

Education Background

- Ph.D. in Computer Software and Theory 2017.09-2022.07
 Peking University, Supervised by Prof. Guoping Wang
- B.Eng. in Optical Engineering 2013.09-2017.07
 Beijing Institute of Technology

Academic Positions

Post-doctoral Researcher 2022.08-now
 University of Stuttgart, Led by Prof. Andreas Bulling & Prof.
 Syn Schmitt

- Best Doctoral Student Paper Award Nominees at INTERACT 2023 (top 5%), 2023
- SimTech Postdoctoral Fellowship, 2022
- National Scholarship (top 2%), 2021
- TVCG Best Journal Award Nominees at IEEE VR 2021 (top 2%, first time for Chinese researchers), 2021
- CSC (China Scholarship Council) Scholarship, 2020
- Chancellor's Scholarship (top 2%), 2020
- Leo KoGuan Scholarship (top 5%), 2019
- Leader Scholarship (top 0.2%, 7 out of over 3800 students), 2017
- National Scholarship (top 2%), 2016
- National Scholarship (top 2%), 2014

Personal Introduction

Research Statement

- Human-computer interaction
- Virtual reality
- Eye tracking
- Human-centred artificial intelligence

Research goal

Develop deep learning methods for modelling human behaviours in activities of daily living

Towards the Coordination of Eye, Body and Context in Daily Activities

- Eye and body movements are correlated in daily activities
- Eye and body movements are influenced by the context, e.g. *scene environment, action, and task*

Coordination of eye, body and context

Towards the Coordination of Eye, Body and Context in Daily Activities

- Everyday Human Behaviour Sensing
- Computational Human Activity Analysis

SGaze: An Eye-Head Coordination Model for Gaze Prediction

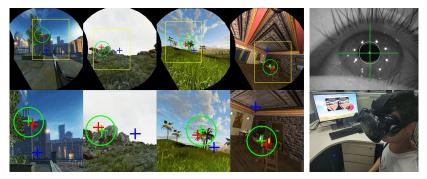
$$\begin{split} \tilde{x}_g = &\alpha_x \cdot \tilde{v}_{hx}(t + \Delta t_x) + \beta_x \cdot a_{hx} + b_x \cdot x_S + c_x \\ \tilde{y}_g = &\alpha_y \cdot \tilde{v}_{hy}(t + \Delta t_y) + b_y \cdot y_S + c_y \end{split}$$

 \tilde{x}_g, \tilde{y}_g : predicted eye gaze

 \tilde{v}_{hx} , \tilde{v}_{hy} : head velocity

 Δt_x , Δt_y : time interval between gaze and head

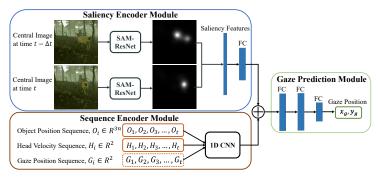
 a_{hx} : horizontal head acceleration


*x*_S, *y*_S: salient positions

 α_{x} , α_{y} , β_{x} , b_{x} , b_{y} , c_{x} , c_{y} : learned parameters

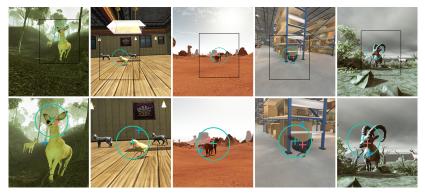
[Hu TVCG'19]

SGaze: An Eye-Head Coordination Model for Gaze Prediction


[Hu TVCG'19]

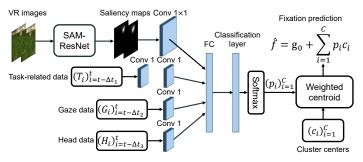
Everyday Human Behaviour Sensing

DGaze: CNN-based Gaze Prediction in Dynamic Scenes


- Gaze estimation using VR content, and head movements
- Gaze forecasting using past gaze positions

[Hu TVCG'20]

DGaze: CNN-based Gaze Prediction in Dynamic Scenes


[Hu TVCG'20]

Everyday Human Behaviour Sensing

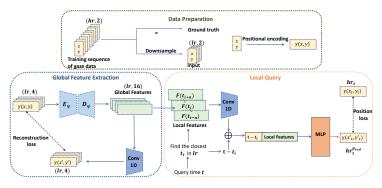
FixationNet: Gaze Forecasting in Task-Oriented Environments

- Extract features from VR content, past gaze and head data
- Forecast fixation using prior knowledge of gaze distribution

[Hu TVCG'21 Best Journal Nominees Award]

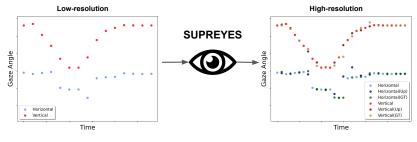
FixationNet: Gaze Forecasting in Task-Oriented Environments

- Stimuli: immersive virtual environments
- Task: visual search


[Hu TVCG'21 Best Journal Award Nominees]

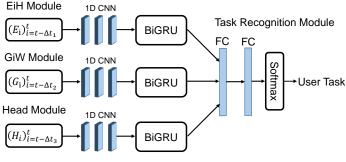
Everyday Human Behaviour Sensing

SUPREYES: SUPer Resolution for EYES


- Implicit neural representation learning
- \cdot Global feature extraction and local query

[Jiao UIST'23]

SUPREYES: SUPer Resolution for EYES


[Jiao UIST'23]

Computational Human Activity Analysis

EHTask: Task Recognition from Eye and Head Movements

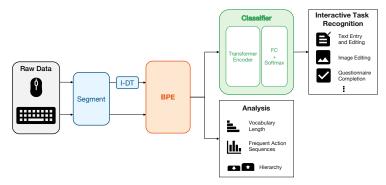
- · Extract features from eye and head movements
- Recognise user tasks from eye-head features

[Hu TVCG'22]

EHTask: Task Recognition from Eye and Head Movements

		Ours	LDA_r	LDA_h	SVM_r	SVM_h	BC_r	BC_h	RFo_r	RFo_h	RFe
Cross-User	Window	84.4%	37.2%	54.0%	29.5%	54.3%	41.5%	49.3%	<u>62.8%</u>	58.0%	48.7%
	MV	97.8%	42.8%	76.1%	34.2%	75.3%	47.5%	65.3%	83.1%	<u>88.9%</u>	68.3%
Cross-Scene	Window	82.1%	37.2%	53.8%	26.3%	5/ 1%	412%	49.0%	62.6%	579%	483%
	MV	96.4%	41.9%	74.2%	26.7%	75.3%	47.5%	64.4%	83.6%	<u>87.2%</u>	72.2%

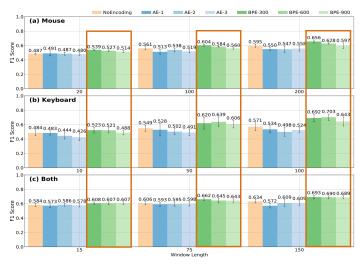
Task recognition performances in cross-user and cross-scene settings


Our method significantly outperforms prior methods in both cross-user and cross-scene settings

Computational Human Activity Analysis

Modelling Interactive Behaviour using NLP Methods

- · Interactive behaviour is similar to natural language
- NLP methods can be used to model interactive behaviour



[Zhang INTERACT'23 Best Student Paper Nominees]

Computational Human Activity Analysis

Modelling Interactive Behaviour using NLP Methods

[Zhang INTERACT'23 Best Student Paper Nominees]

Thank you!

- Hu TVCG'19. Sgaze: a data-driven eye-head coordination model for realtime gaze prediction. *IEEE Transactions on Visualization and Computer Graphics*, 25(5):2002–2010, 2019.
- Hu TVCG'20. Dgaze: Cnn-based gaze prediction in dynamic scenes. IEEE Transactions on Visualization and Computer Graphics, 26(5):1902–1911, 2020.
- Hu TVCG'21. Fixationnet: forecasting eye fixations in task-oriented virtual environments. *IEEE Transactions on Visualization and Computer Graphics*, 27(5):2681–2690, 2021.
- Hu TVCG'22. Ehtask: recognizing user tasks from eye and head movements in immersive virtual reality. *IEEE Transactions on Visualization and Computer Graphics*, 2022.
- Jiao UIST'23. Supreyes: Super resolution for eyes using implicit neural representation learning. In Proc. ACM Symposium on User Interface Software and Technology, pages 1–13, 2023. doi: 10.1145/3586183.3606780.
- Zhang INTERACT'23. Exploring natural language processing methods for interactive behaviour modelling. In Proc. IFIP TC13 Conference on Human-Computer Interaction (INTERACT), pages 1–22. Springer, 2023.

