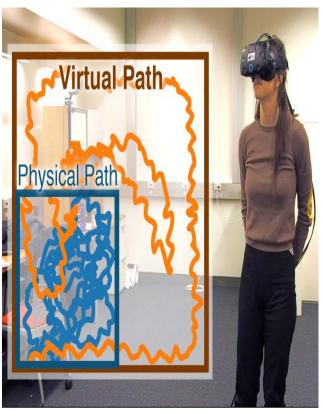


EHTask: Recognizing User Tasks from Eye and Head Movements in Immersive Virtual Reality

Zhiming Hu¹, Andreas Bulling², Sheng Li¹, Guoping Wang¹

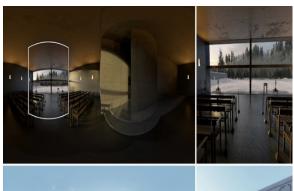

¹Peking University ²University of Stuttgart


Project URL: cranehzm.github.io/EHTask

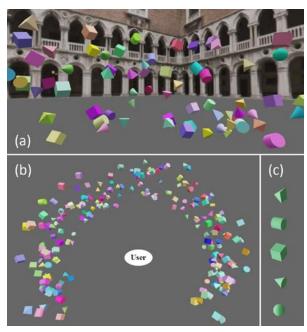
Background

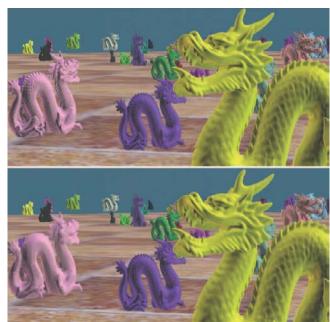
Application of Human Visual Attention in VR

Gaze-Contingent Rendering [Patney et al. 2016]


Redirected Walking [Sun et al. 2018]

Layout Optimization [Alghofaili et al. 2019]


Background



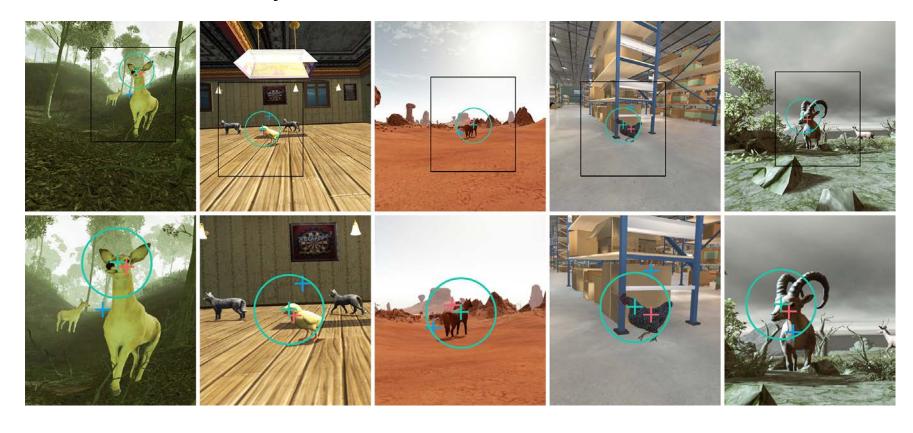
Application of Human Visual Attention in VR

VR Content Design [Sitzmann et al. 2018]

Gaze Guidance [Grogorick et al. 2017]

LOD Management [Lee et al. 2009]

Background



Problem Statement

- Previous works on visual attention analysis typically only explored one specific VR task and paid less attention to the differences between different tasks
- Existing task recognition methods typically focused on 2D viewing conditions and only explored the effectiveness of human eye movements

Visual Attention Analysis in VR

Visual Attention Analysis for Free Viewing Task in VR [Hu et al. 2020]

Visual Attention Analysis in VR

Visual Attention Analysis for Visual Search Task in VR [Hu et al. 2021]

Task Recognition Methods

- Scene Memorization
- > Reading
- Scene Search
- Pseudo-Reading

Two goldfish, named Shaggy and Daphne, have become the smallest and hardiest survivors of the devastating February earthquake in Christchurch, New Zealand. The fish spent four and a half nonths trapped in their tank in the city's off-limits downtown without anyone to feed them or even any electricity to power their tank filter.

Des quidities, annue Mungag and Rephen, have become the annitarie and
beneficial constitute at the description Rebinary continguish to

Materials and, the Resident. Me birth again here and a best annitar

temporal to their tent to the nity's ath-timits describes arithmic angus

Task Recognition for 2D Images [Henderson et al. 2013]

Task Recognition Methods

- > Explore
- > Observe
- > Search
- > Track

Task Recognition for 2D Videos [Hild et al. 2018]

Compared with Prior Works on Visual Attention Analysis:

- > Explore four different VR tasks using the same settings
- Analyze the differences between different VR tasks

Compared with Previous Works on Task Recognition:

- Focus on immersive VR instead of 2D images or videos
- Explore the effectiveness of both human eye movements and head movements rather than only human eye movements

Motivation

Applications of Task Recognition Methods in VR

Adaptive virtual environment design

Provide users with dynamic and adaptive experiences based on user tasks

Low-friction predictive interfaces

Provide users with convenience for completing the task with less friction

> Attention-aware intelligent systems

Improve the usability of the system by adapting to different tasks and states of attention

EHTask

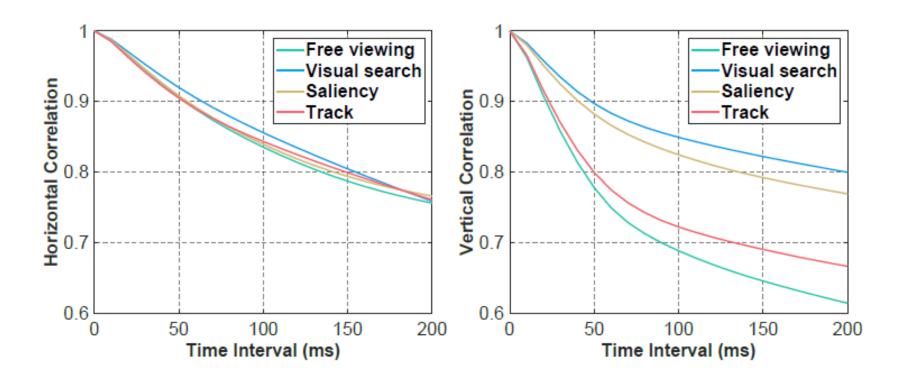
Contributions

- We provide a new dataset that contains human eye and head movements under four task conditions
- We analyze the patterns of human eye and head movements and reveal significant differences across different tasks
- ➤ We present *EHTask*, a novel **learning-based** method to recognize user tasks in immersive virtual reality

Data Collection

- > Participants: 30 users (18 male, 12 female)
- > Stimuli: 15 360-degree VR videos
- > Apparatus: HTC Vive, eye tracker
- Procedure: Free viewing, Visual search, Saliency, Track
- > Data: Task categories, Eye movements, Head movements

Stimuli

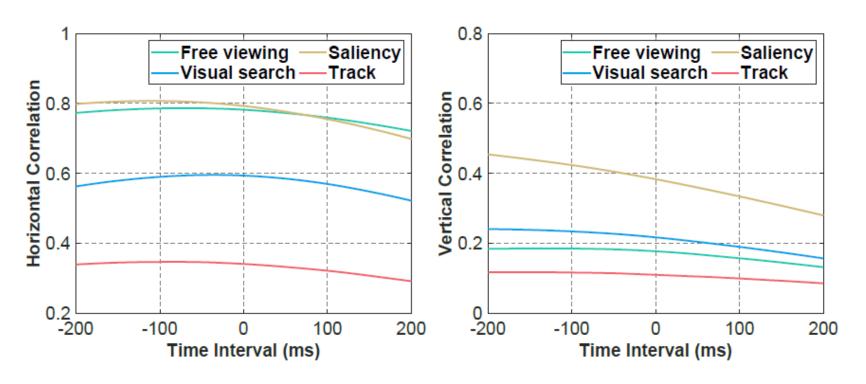

Statistical Characteristics of Eye Movements in the Four Tasks

		Free viewing	Visual search	Saliency	Track
Mean Fixation Duration	Mean	263.4 ms	<i>339.5</i> ms	241.2 ms	431.7 ms
	SD	25.6 ms	49.0 ms	24.3 ms	106.7 ms
Fixation Number Per Second	Mean	1.41	1.97	1.22	1.77
	SD	0.38	0.17	0.43	0.19
Mean Saccade Duration	Mean	633.2 ms	269.3 ms	776.0 ms	241.1 ms
	SD	218.0 ms	69.2 ms	260.1 ms	56.2 ms
Saccade Number Per Second	Mean	1.03	1.20	0.95	1.01
	SD	0.17	0.18	0.19	0.24
Mean Saccade Amplitude	Mean	6.51°	4.73°	8.56°	5.40°
	SD	1.24°	1.05°	1.49°	1.58°
Fixation Distribution Dispersion	Mean	2.21E-6	2.25E-6	7.08E-6	2.50E-6
Tixation Distribution Dispersion	SD	1.01E-6	1.18E-6	3.50E-6	1.57E-6

For each item, the difference in the fonts of two tasks indicates that there exists a significant difference between them.

Auto-Correlations of Eye Movements in the Four Tasks

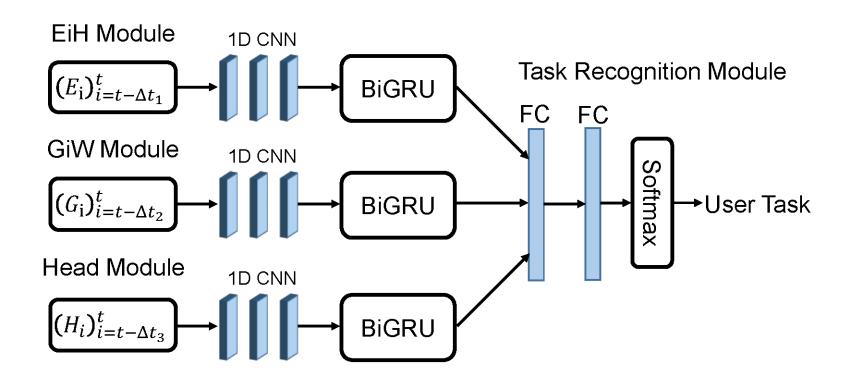
The auto-correlations of the horizontal (left) and vertical (right) eye coordinates


Statistical Characteristics of Head Movements in the Four Tasks

		Free viewing	Visual search	Saliency	Track
Maan Absolute Harizontal Valority	Mean	$22.7^{\circ}/s$	9.1°/s	$26.8^{\circ}/s$	6.4°/s
Mean Absolute Horizontal Velocity	SD	4.3°/s	2.3°/s	4.4°/s	2.4°/s
Mean Absolute Vertical Velocity	Mean	2.9 °/s	2.7 °/s	$\frac{7.5^{\circ}}{s}$	1.9°/s
Mean Absolute vertical velocity	SD	$0.6^{\circ}/s$	$0.5^{\circ}/s$	1.4°/s	$0.4^{\circ}/s$
Mean Absolute Horizontal Acceleration	Mean	$182.6^{\circ}/s^2$	$140.4^{\circ}/s^2$	$203.5^{\circ}/s^2$	$129.8^{\circ}/s^2$
Mean Absolute Horizontal Acceleration	SD	$29.4^{\circ}/s^2$	$14.1^{\circ}/s^2$	$23.9^{\circ}/s^2$	$19.4^{\circ}/s^2$
Mean Absolute Vertical Acceleration	Mean	$125.0^{\circ}/s^2$	$114.2^{\circ}/s^2$	$145.4^{\circ}/s^2$	$109.4^{\circ}/s^{2}$
Wedi Absolute Vertical Acceleration	SD	$15.0^{\circ}/s^2$	$11.1^{\circ}/s^2$	$12.0^{\circ}/s^2$	$11.6^{\circ}/s^2$
Velocity Distribution Dispersion	Mean	2.64E+4	6.95E+3	2.39E+5	3.12E+3
velocity Distribution Dispersion	SD	2.13E+4	7.98E+3	1.27E+5	4.35E+3

For each item, the difference in the fonts of two tasks indicates that there exists a significant difference between them

Eye-Head Coordination in the Four Tasks



The correlations between gaze positions and head velocities in the horizontal (left) and vertical (right) directions

EHTask Model

EHTask Model

Architecture of EHTask model

Experiments and Results

Task Recognition Performance in VR

		Ours	LDA	SVM	ВС	RFo	RFe
Cross- Window User MV	Window	84.4%	54.0%	54.3%	49.3%	62.8%	48.7%
	MV	97.8%	76.1%	75.3%	65.3%	83.1%	68.3%
Cross- Window Scene _{MV}	82.1%	53.8%	54.1%	49.0%	62.6%	48.3%	
	MV	96.4%	74.2%	75.3%	64.4%	83.6%	72.2%

Task recognition performances on our dataset

EHTask outperforms other methods in both cross-user and cross-scene settings

Experiments and Results

Task Recognition Performance in Real World

	Ours	LDA	SVM	ВС	RFo	RFe
Window	61.9%	39.0%	37.9%	36.3%	44.1%	36.1%
MV	87.7%	60.0%	46.2%	40.0%	60.0%	64.6%

Task recognition performances on a real-world dataset

EHTask outperforms other methods in real-world situations

Discussion

Limitations

- We only explored the four tasks that are most commonly used in VR applications
- ➤ We employed **non-interactive** VR videos instead of interactive 3D virtual environments as our stimuli
- We mainly focused on the differences between different tasks rather than the differences between different stimuli

Discussion

Future Work

- Overcome the limitations
- Explore the effectiveness of **other factors**, such as human body movements and hand movements, in recognizing user tasks
- Apply our model to other systems, such as real-world system, AR system, and MR system
- Recognize other mental states in immersive VR, such as user cognitive loads and the levels of VR cybersickness, from human eye and head movements

Thank you