SGaze: A Data-Driven Eye-Head Coordination Model for Realtime Gaze Prediction

Zhiming Hu¹, Congyi Zhang¹, Sheng Li¹ Guoping Wang¹, Dinesh Manocha²

¹Peking University ²University of Maryland

Project Website: https://cranehzm.github.io/SGaze

Eye Tracking in Virtual Reality

Eye Tracking^[1]

[1] https://www.7invensun.com/

Motivation Eye Tracking in Virtual Reality

VR content design [Sitzmann et al 2018] Gaze-contingent rendering [Patney et al 2016] Gaze based interaction [Pfeiffer et al 2008]

Solution to Eye Tracking in VR

Hardware Solution

Eye Tracker^[1]

Software Solution?

[1] https://www.7invensun.com/

Related Work Salient Object Detection

Top: original images; Bottom: salient objects^[1]

[1] https://mmcheng.net/msra10k/

Related Work Saliency Prediction

Original Image^[1]

Eye Fixation^[1]

Saliency Map^[1]

Our goal: predict realtime gaze position!

[1] http://saliency.mit.edu/results_mit300.html

Contributions

- Propose a novel eye-head coordination model (SGaze)
- Propose a novel gaze prediction method based on our model
- Build a dataset for gaze prediction and provide a thorough analysis of our dataset
- > Apply our model to gaze-contingent rendering

Talk Outline

- Data collection
- Data analysis
- Eye-head coordination model
- > Results
- Limitations, and Future Work

Data Collection

- Participants: 60 users (35 male, 25 female, ages 18-36)
- Stimuli: 7 scenes, static and soundless
- System: HTC Vive + eye tracker
- Procedure: free exploration, no task
- Data: realtime scenes + gaze positions + head poses

Stimuli

Data Collection

Data Analysis: Head Movement

Head velocity coordinate system

Three regions of head velocity

Data Analysis: Head Movement

	Static	Intentional	Sudden
Horizontal	5.55%	91.45%	3.00%
Vertical	4.54%	90.69%	4.77%

Distribution of data in different regions

Most of the data lies in Intentional Move region.

Data Analysis: Eye-Head Linear Correlation

Pearson's correlation coefficient (PCC)

	Static	Intentional	Sudden	Whole
$PCC(\boldsymbol{v}_{\boldsymbol{x}})$	0.1345	0.5883	0.1511	0.5641
$PCC(\boldsymbol{v_y})$	0.1484	0.4969	-0.0906	0.4132
2				

The PCCs between gaze position and head velocity in different regions

Head rotation velocity has a strong linear correlation with gaze position in a certain range.

Turn left/right head \longrightarrow Look left/rightTurn up/down head \longrightarrow Look up/down

Data Analysis: Eye-Head Linear Correlation

$PCC(v_x)$	0.5641	$PCC(a_{\chi})$	0.1134
$PCC(v_y)$	0.4132	$PCC(a_y)$	0.0132

Left: the PCCs between gaze position and head velocity Right: the PCCs between gaze position and head acceleration

Eye-head linear correlation is stronger in the horizontal direction than in the vertical direction.

Data Analysis: Eye-Head Latency

The latencies between eye movements and head movements in horizontal (left) and vertical (right) directions

Eye movements usually happen before head movements.

Data Analysis: Saccade Analysis

Amplitudes of horizontal (left) and vertical (right) saccades

Long saccades seldom occur in free exploration condition.

Eye-Head Coordination Model (SGaze)

Gaze = Head + Content + Task

$$\begin{aligned} x_g(t) &= \alpha_x \cdot v_{hx}(t + \Delta t_{x1}) + \beta_x \cdot a_{hx}(t) + F_x(t + \Delta t_{x2}) + G_x(t) + H_x(t) \\ y_g(t) &= \alpha_y \cdot v_{hy}(t + \Delta t_{y1}) + F_y(t + \Delta t_{y2}) + G_y(t) + H_y(t) \end{aligned}$$

 x_g, y_g : gaze position v_{hx}, v_{hy}, a_{hx} : head velocity and acceleration F_x, F_y : content G_x, G_y : task H_x, H_y : other factors a_x, a_y, β_x : the linear influence of velocity and acceleration $\Delta t_{x1}, \Delta t_{y1}$: eye-head latencies

Eye-Head Latency

Baselines: center, mean, salient position

Evaluation Metrics: angular distance, precision and recall rates

Performance Evaluation

	Ours	Mean	Center	Saliency
Mean	8.52°	10.93°	11.16°	21.23°
Std	5.66°	6.43°	6.44°	12.10°

Comparison of angular distance between our model and the baselines.

Our model performs best in terms of both mean and standard deviation.

Performance Evaluation

Cumulative distribution function (CDF) of the angular distance.

Precision and recall rates at different central radii.

Ablation Study

Angular distances of the ablated models.

Each component in our model contributes to gaze prediction.

Gaze-Contingent Rendering

Normal mode

Gaze-contingent rendering

User Study Ours vs Baseline

t-test, p < 0.01Our model is significantly better than the baseline.

Gaze-Contingent Rendering

Performance on Simple Task

Simple task

Count trees

Look for balls

Performance on Simple Task Result

Comparison of angular distance between our model and the baselines for the simple tasks.

Our model still outperforms the baselines when there exists a simple task.

Limitations and Future Work

Limitations

- Free exploration condition (no-task situation)
- Soundless situation
- Static scenes

Future Work

- Task-oriented situation
- Sound
- Dynamic scenes
- Deep Learning

Take-Home Message

> Head pose data can facilitate gaze prediction.

- Head rotation velocity has a strong linear correlation with gaze position in a certain range.
- > Eye movements usually happen before head movements.
- > Gaze-contingent rendering can be achieved using our model.

Homepage: https://cranehzm.github.io/ Project Website: https://cranehzm.github.io/SGaze