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Fig. 1: Realtime gaze prediction performed using our eye-head coordination model. The quadruplet on the left demonstrates the
gaze prediction results tested using different scenarios. The upper row shows the images captured from an HMD’s screen, with
zoomed-in view in the lower row. The ground truth of eye gaze in each scenario is marked using a green cross, the blue cross denotes
the mean baseline, and the red one denotes our result. The green circle shows the foveal region with a 15 ◦ field of view. The figure
of a user’s eye gaze on the top-right illustrates that our goal is to predict realtime gaze position, and the bottom-right illustrates our
experimental setup. From these results, our model has high accuracy when compared with the ground truth from the eye tracker.

Abstract— We present a novel, data-driven eye-head coordination model that can be used for realtime gaze prediction for immersive
HMD-based applications without any external hardware or eye tracker. Our model (SGaze) is computed by generating a large dataset
that corresponds to different users navigating in virtual worlds with different lighting conditions. We perform statistical analysis on the
recorded data and observe a linear correlation between gaze positions and head rotation angular velocities. We also find that there
exists a latency between eye movements and head movements. SGaze can work as a software-based realtime gaze predictor and we
formulate a time related function between head movement and eye movement and use that for realtime gaze position prediction. We
demonstrate the benefits of SGaze for gaze-contingent rendering and evaluate the results with a user study.

Index Terms—Eye-head coordination, gaze prediction, Pearson’s correlation coefficient, eye tracking, saliency

1 INTRODUCTION

Virtual reality (VR) systems are used to explore 3D virtual worlds using
multimodal interfaces. During navigation or exploration, a user may
gaze at different objects of interest or in different directions. There is
considerable work on the use of gaze information for eye movement-
based interaction [33] and gaze-contingent rendering (or foveated ren-
dering) [16, 26, 31, 32]. Gaze-contingent rendering is a technique that
is used to improve the frame rate and is based on decreasing the ren-
dering quality in the peripheral region while maintaining high fidelity
in the foveal region. A hardware-based solution for computing the
gaze position is based on using eye trackers, which are designed for
realtime gaze tracking. There is considerable work on the development
of eye-trackers and their integration with commercial head mounted
devices (HMDs). However, as accessory equipment attached to an
HMD, eye trackers can be relatively expensive and lack ease of use. In
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this paper, we investigate a complimentary software-driven approach
for realtime gaze prediction.

Gaze prediction is different from prior works in human eye fixations
or visual saliency, which predict a density map of eye fixations [10].
In contrast, realtime gaze prediction aims to predict a single gaze and
the realtime requirements (60Hz or better) make it distinct from ap-
proaches that focus on saliency prediction. Realtime gaze prediction is
a very challenging task due to multiple factors. First, the attention of
the human visual system (HVS) is affected not only by the content of
the scene but also by specific tasks performed in a virtual environment.
The HVS has a two-component framework of attention: a bottom-up
mechanism and a top-down mechanism [18]. The bottom-up mecha-
nism is fast and it biases the observer’s attention towards the scene’s
salient object. On the other hand, the top-down mechanism is slower
and it directs attention under cognitive control [18]. It is difficult to
predict gaze positions when both mechanisms are in effect. Second, a
human’s gaze can be considered a random behavior [2] independent
of observation conditions. Different individuals may gaze at different
positions even when they are provided with the same content, and
an individual user’s gaze behavior is not identical even if he or she
performs a task repeatedly within the same scene. Furthermore, the
existence of a saccade, a quick, simultaneous movement of both eyes
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between two or more phases of fixation in the same direction, makes
gaze prediction difficult. It is challenging to capture users’ realtime
gaze positions accurately when a saccade occurs. Finally, the realtime
requirement imposes strict restrictions on the efficiency of gaze pre-
diction methods. Many prior works on saliency prediction [4] mainly
focus on the accuracy of the algorithms and do not provide guarantees
in terms of realtime performance for VR applications.

There is considerable work on gaze-based interaction in different
fields. At a broad level, prior interaction methods can be classified
into four types: diagnostic (off-line measurement), active (selection),
passive (foveated rendering), and expressive (gaze synthesis) [11]. In
the context of VR applications, there is interest in active, passive, and
expressive methods. The active techniques provide the gaze data as
a streaming signal corresponding to the eye movement and are used
for selection or similar commands as part of the interface. On the
other hand, passive techniques are used to incorporate a change in the
display like foveated rendering, but do not imply a specific user action.
Expressive techniques are used for observations and are useful in terms
of noticing the movement of the eyes of an avatar or a virtual agent.

Main Results: We present and evaluate a software-based solution for
predicting realtime gaze position in an immersive VR system without
any additional specialized hardware called SGaze. Our approach is
based on a novel, data-driven method that models coordinated move-
ments between eyes and the head called eye-head coordination. More-
over, we use this model (SGaze) for realtime prediction of gaze po-
sitions using the head movements and other factors. Our technique
can possibly be used as a substitute for an eye tracker for exploring
virtual worlds using HMDs, especially for passive gaze-based inter-
actions. Our data-driven model is formulated based on the following
procedures:

Build a dataset: We record data that can reflect the realtime viewing
statuses of the observers. To this end, we conduct a study on 60 partici-
pants who are asked to freely navigate in 7 virtual scenes including both
indoor and outdoor field scenes with different lighting conditions (See
Fig. 2). Next, we build a dataset that records the gaze positions and
the corresponding head poses of the participants. The realtime scenes
viewed by the observers are also recorded. In this paper, we mainly
focus on the free exploration of the virtual scene, i.e. no specific tasks
or instructions are given to the participants when they are navigating
using an HMD.

Model eye-head coordination: We perform Pearson’s correlation
coefficient (PCC) analysis on the dataset and observe that there exists a
range within which gaze positions have a strong linear correlation with
head rotation angular velocities. We also find that there exists a latency
between eye movements and head movements. Moreover, we analyze
the existence of saccades in our gaze dataset and discover that long
saccades seldom exist when users are immersed in virtual environments.
Based on the analysis, we present our eye-head coordination model as
a time related function between head movement and eye movements.

Predict gaze and application: Based on our eye-head coordina-
tion model, we propose a novel realtime gaze prediction method that
combines realtime head poses obtained from a head tracker with other
factors, including saliency maps of the scenes. We also propose some
baselines and evaluation metrics for realtime gaze position prediction.
We evaluate the performance of our method and the results show that
our method performs significantly better than the baselines. Moreover,
we use our model for gaze-contingent rendering and conduct a user
study to validate the effectiveness of our approach. Our preliminary
results from the user study indicate that our approach can be considered
as an alternative to eye trackers in some immersive VR applications.
We also evaluate our model’s performance on simple tasks and the
result shows that our model still outperforms these baselines.

Overall, our contributions include:

• We gather data and evaluate the stereoscopic vision interaction
with an HMD in immersive virtual environments. We use this data
to build an eye-head coordination model (SGaze) by analyzing
the key components of users’ gaze behaviors.

• We present a novel realtime gaze prediction method based on our
eye-head coordination modeling.

• We present some baselines and evaluation metrics for realtime
gaze prediction and validate our method by gaze-contingent ren-
dering. Our data and metrics can be used for other analysis and
applications.

2 RELATED WORK

In this section, we give a brief overview of prior work on gaze prediction
and eye-head coordination.

2.1 Gaze Prediction
Visual saliency prediction or gaze prediction is a well-studied field in
computer vision and related areas. Many saliency models have been
proposed in the last three decades. Inspired by the neuronal architecture
of the early primate visual system, Itti et al. [19] proposed a classical
visual attention model that computes saliency maps using multiscale
image features. Realizing that scene context plays an important role
in visual saliency, Oliva et al. [25] proposed a saliency model that
takes contextual information into consideration. In general, most of the
existing saliency prediction models are based on bottom-up approaches
that only utilize low-level image features such as intensity, color, and
orientation [6, 19]; top-down approaches, which consider high-level
knowledge of the scene like specific tasks and context [5,17]; or hybrid
models. With recent advances in deep learning, many methods based
on convolutional neural networks (CNNs) have been proposed and
have achieved good performances on the saliency benchmarks [10, 20].
Most of the previous visual saliency models were designed for a single
image. Apart from these models, researchers also investigated the
saliency of stereo images [9] and videos [34]. However, in the field
of virtual reality, there is limited work on visual saliency and gaze
behavior. Sitzmann et al. [29] and Rai et al. [28] both explored the
VR saliency in 360◦ static images. Xu et al. proposed a model for
gaze prediction in dynamic 360◦ immersive videos [36]. These visual
saliency prediction or gaze prediction methods generally predict a
density map of eye fixations rather than predicting a single realtime
gaze position. However, for some VR applications like gaze-contingent
rendering and eye movement interaction, a user’s realtime gaze position
has more practical significance than a density map of eye fixations. In
this paper, we present a realtime method for gaze position prediction
using our data-driven head-eye coordination model.

2.2 Eye-Head Coordination
Eye-head coordination refers to coordinated movements between eyes
and the head and has been investigated in the fields of cognitive science
and neuroscience. In his seminal work, Yarbus [37] found that the
eyes and the head move in coordination during gaze shifts and that
there exists a connection between eye-head coordination and visual
cognition. Nakashima and Shioiri [24] further revealed that there is
interference with visual processing when head and eye directions are
different because it takes time to modulate attention in this viewing
condition. This study indicates that eye-head coordination is important
for visual cognition and that humans achieve better cognitive perfor-
mance when eye and head directions are coordinated during gaze shifts.
Einhäuser et al. discovered the eye-head coordination of humans dur-
ing free navigation of natural environments [12]. Other works [1, 38]
revealed that there exists a latency in eye-head coordination and that
eye movements usually happen before head movements.

Many studies on eye-head coordination concentrated on the rela-
tionship between the amplitude of head movements and the amplitude
of gaze shifts, revealing that a head movement’s amplitude is closely
related to the gaze shift amplitude [13, 14]. Stahl [30] reported that
when gaze shift amplitude is low, there exists an eye-only range in
which gaze shifts are unaccompanied by head movements. Conversely,
when gaze shift amplitude is high, there exists an eye-head range in
which head movement amplitude has a linear relationship with gaze
shift amplitude. Nakashima et al. [23] managed to improve the accu-
racy of saliency prediction by utilizing head direction. Our approach
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is motivated by these prior works and is based on collecting a large
dataset to compute a correlation between realtime gaze position and
realtime head movement.

There is considerable work on head tracking and current VR systems
can measure head movement with high precision in realtime. Recent
works by Sitzmann et al. [29] and Rai et al. [28] predicted saliency
maps using head orientation for 360◦ images in VR. However, only
head orientation is used for 360◦ panorama applications. In contrast,
our approach targets finding a correlation between head movements
and on-screen gaze positions.

2.3 Eye Tracking and Gaze Positions
Eye tracking is the process of measuring either the point of gaze (where
one is looking) or the motion of an eye relative to the head. An eye
tracker is a device for measuring eye movements that can be used in
research on the visual system, psychology, and psycho-linguistics, as
an input device for human-computer interaction, and also in product
design. Eye tracking technology has recently received more attention in
VR systems. Gaze-contingent rendering [16, 26] requires the realtime
gaze positions of the users to determine the central foveal region for
rendering applications. Eye movement-based interactions in virtual
reality also demand accurate realtime gaze positions to provide users
with a good experience [22].

3 GAZE DATA COLLECTION

A key part of our data-driven model is gathering the data of a large
number of participants freely navigating in virtual worlds. We use this
data for analysis and for formulating our eye-head coordination model.
In this section, we present the details of our data collection process.

Although there are already a few datasets that record users’ gaze
data in virtual reality, the stimuli of these datasets are either 360◦
images [28, 29] or 360◦ videos [36]. These datasets consist of head
rotation information, and it is not clear whether these datasets can be
used directly for users to freely explore and interact with the 3D virtual
scenes. Furthermore, those datasets lack auxiliary information like 3D
scenes viewed by the observers, information that is useful for realtime
gaze analysis and prediction. Therefore, we have built a new dataset
for realtime gaze prediction that is recorded from a VR HMD and eye
tracker hardware. Our dataset also includes realtime 3D scenes viewed
by the observers, their gaze data, and their head poses.

3.1 Stimuli
To collect users’ realtime gaze data in virtual environments, participants
were asked to freely explore 3D virtual scenes. Fig. 2 shows 7 virtual
scenes used in our experiments with different lighting conditions. These
test scenes include city, desert, forest, etc., which are common in VR
applications. All scenes are static without any moving objects in them.
To collect users’ gaze data in different lighting conditions, we use seven
different scenes and view them with bright lighting (Fig. 2, top) and dim
lighting (Fig. 2, bottom). Compared with 360◦ images or 360◦ videos,
our test scenes are represented using 3D models and participants can
teleport themselves to any positions they want using the interactive
controllers.

Fig. 2: Seven 3D virtual scenes used for data collection, including
both indoor and outdoor scenes with different lighting conditions. Top:
Bright lighting; Bottom: Dim lighting.

3.2 Participants
60 participants (35 male, 25 female, ages 18− 36) involved in our
experiments. Each participant reported normal or corrected-to-normal

Data item Raw data After processing
Gaze On-screen point Visual angle

Head pose Rotation matrix Rotation velocity & acceleration
Time Time stamp Calibrated time stamp

Table 1: Data structure and conversion performed on the raw gaze and
head pose data along with the time.

vision and the eye tracker was calibrated for each user before he/she
took part in our experiments.

3.3 System Details
In all our experiments, we use an HTC Vive head-mounted suit (includ-
ing Vive controller for interaction) equipped with a 7invensun aGlass
DK II embeddable eye tracker with an accuracy of 0.5◦ at a sampling
frequency of 100 Hz. We record the head pose using HTC Vive’s
inertial measurement unit (IMU) at a sampling rate of 200 Hz with an
accuracy up to 1.5 cm and jitter < 0.3 mm. We use the Unity game
engine to display all the scenes and record the realtime scenes for the
observers using a Bandicam screen-recorder at 60 fps. The CPU and
GPU of our platform are an Intel(R) Xeon(R) E3-1230 v5 @ 3.40 GHz
and an NVIDIA GeForce GTX 1060 6GB, respectively. The snapshot
of the experiment setup is illustrated in the bottom-right of Fig. 1.

3.4 Procedure
At the beginning of the experiments, participants are given at least 3
minutes to get used to our experimental system. We set four start posi-
tions for each scene beforehand to help users fully explore our scenes.
Participants can use the HTC Vive controllers to switch from the preset
start positions to any position they like. During the experiments, no
task is specified and the participants can freely navigate and observe the
scenes without any instruction. Each observer performs 4 tests (2 dif-
ferent scenes randomly chosen from our 7 scenes with both bright and
dim lighting) and each test lasts for at least 3 minutes. Each participant
is provided with a pair of earplugs to avoid auditory disturbance. We
record the realtime scenes viewed by the observers, the gaze data and
the head pose information. Specifically, our dataset includes 240 pieces
of data (one piece of data contains the records from one participant’s
test) and each piece of data includes 18,000 gaze positions (100Hz
sampling rate), 36,000 head pose records (200Hz sampling rate) and
10,800 frames of scene screenshots (60Hz sampling rate). The time
stamps of these data are also recorded and can help align them with
each other.

For later analysis, we make some data conversions to the raw gaze
and head pose data, as shown in Table 1.The raw gaze data are users’
on-screen gaze positions ranging from (0,0) for top-left to (1,1) for
bottom-right. We use a Cartesian coordinate for gaze by setting the
origin to the screen center and orienting the X-axis from left to right
and the Y-axis from bottom to top in the plane of the screen. We convert
the raw gaze position to a visual angle (angle between the vector of the
sight line and the normal of the screen) in the new coordinate system.
The raw head pose data are the rotation matrices from the head position
to the absolute tracking system, and they are converted into the rotation
velocity and acceleration along the screen plane’s X and Y axes.

4 SGAZE: EYE-HEAD COORDINATION MODEL

Recent works by Sitzmann et al. [29] and Rai et al. [28] introduced
head pose data into saliency predictions for 360◦ images. Because their
models are specialized for 360◦ images with only the head orientation
information, it is not clear whether these datasets can be used to find
a correlation between head movements and on-screen gaze positions.
Since the head pose data can be easily accessed from the HMD’s IMU,
we use that information to formulate our eye-head coordination model.

An intuitive observation of the eye-head coordination in virtual
reality is that the amplitudes of users’ on-screen gaze positions have
strong relationships with their heads’ rotations, namely, the velocity
and acceleration. In addition, the gaze behavior in VR is a complicated
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pattern that is affected by multiple factors including content, task,
latency, etc. In this section, we present an eye-head coordination model
to explain users’ realtime gaze behaviors when they explore virtual
environments in a time sequence:

xg(t) = αx · vhx(t +∆tx1)+βx ·ahx(t)+Fx(t +∆tx2)+Gx(t)+Hx(t),
yg(t) = αy · vhy(t +∆ty1)+Fy(t +∆ty2)+Gy(t)+Hy(t),

(1)
where xg and yg denote the coordinates of the gaze position; vhx and
vhy are the head rotation velocities in horizontal and vertical directions,
respectively; ∆tx1 and ∆ty1 are the latencies between eye movements
and head movements in horizontal (X) and vertical (Y ) directions,
respectively; ahx is the head rotation horizontal acceleration; Fx and Fy
represent the influences from the exact VR content appearing in the
HMD; ∆tx2 and ∆ty2 are the response latencies; Gx and Gy refer to the
influences of specific tasks; Hx and Hy refer to the influences of all
other factors, including the user’s personal characteristics, behavioral
habits, mental state, etc.; and αx,αy and βx are influence coefficients
that can be further solved by data fitting. We will discuss each entry
based on the analysis of key factors from the biological movements and
statistics in the rest of this section.

4.1 Head Movement
Eye-head coordination in virtual reality may be quite different at differ-
ent head velocities. Recent work by Sitzmann et al. [29] has revealed
that human gaze behaviors are different at low and high head velocities.
The authors divided their data into two regions by setting a threshold ve-
locity. However, acute head movements with extremely high velocities
may be caused by sudden accidents, which may influence the eye-head
coordination [15]. Therefore, to quantitatively analyze the eye-head
coordination, we classify the domain of horizontal and vertical head
rotation velocity into three separate regions for the eye-head coordina-
tion model: Static, Intentional Move, and Sudden Move (Fig. 3). The
thresholds between those regions are denoted as vxh, vxmin, vxmax, vyh,
vymin, vymax.

vx

vy

0-vxh vxh

vyh

-vyh

vxmin vxmax

vymin

vymaxP 

Intentional Move
Sudden Move

Static

vx

vy

Fig. 3: Left: Head rotation angular velocity coordinate system on
the HMD. Right: Segmentation of head rotation velocity into several
regions for eye-head coordination. Horizontal velocity is segmented
into 3 separate sub-regions: Static region (red), Intentional Move region
(orange), and Sudden Move region (baby blue); vertical velocity is
segmented as well, e.g., a gaze position P’s horizontal velocity locates
in Static region and its vertical velocity lies in Intentional Move region.

Static region refers to the condition when the users move their heads
slightly or not at all. In this region, users’ gaze positions are mainly
influenced by factors like the content of the scenes, users’ mental sta-
tuses, etc., and are invulnerable for minor head movements. Intentional
Move region stands for the circumstance when head movements are
intentionally driven by the users themselves and we find that within this
region, users’ on-screen gaze positions have strong linear correlations
with the rotation velocities of their heads. Sudden Move region is the
region within which head movements are caused by sudden accidents
and the correlation between gaze direction and head rotation velocity
is small. Moreover, we will show that there exists a latency between
eye movements and head movements, meaning that eye movements
happen before head movements. Furthermore, a saccade, which refers
to a fast eye movement, may violate our eye-head linear correlation due

to the vestibulo-ocular reflex [21]. Since the scenes tested are static and
the users are given no specific tasks, we confirm that saccades seldom
occur in our dataset and they may happen more frequently when the
head rotation velocity is relatively high.

4.2 Eye-Head Linear Correlation

Static region refers to the low velocity region where users’ attentions are
more likely to be influenced by the content of the scene and are weakly
correlated with head movements [29]. To determine the threshold
velocities vxh and vyh for horizontal and vertical Static regions, we
initialize vxh and vyh to 0 and further increase them at a growth rate of
0.1◦/s. Then we calculate the Pearson’s correlation coefficient (PCC)
between the gaze positions and head rotation angular velocities and
find that PCC increases with the magnitude of threshold velocity in the
low velocity regions. PCC is an indicator that ranges from -1 (perfect
negative linear correlation) to 1 (perfect positive linear correlation).
We set a constraint that the PCC in Static region should be lower than
0.15 [8], which means that the eye-head linear correlation is very weak.
Within this constraint, we get vxh = 0.5◦/s and vyh = 0.2◦/s.

Sudden head movements seldom occur during locomotion [15, 27],
which means that Sudden Move region should contain very little data
and Intentional Move region should take a larger portion of the records
over Static region. Therefore, to locate the boundary between Inten-
tional Move and Sudden Move regions (Fig. 3), we compute the PCC
along the horizontal direction (the same for the vertical case) in a se-
ries of intervals {[vx1,vx2]|vx1 <−vxh, vx2 > vxh} under the constraint
that each valid interval has to contain over 95% of all records outside
Static region. Practically, we enumerate the lower and upper bounds
of the intervals at every 0.1◦/s and filter out the invalid intervals that
cover less than 95% of the records, then find the optimal interval
with the highest PCC. We finally confine the interval of Intentional
Move region as [−88.5◦/s,−0.5◦/s]∪ [0.5◦/s,83.8◦/s] horizontally
and [−35.6◦/s,−0.2◦/s]∪ [0.2◦/s,36.0◦/s] vertically.

Table 2 shows the distribution of data in different regions and we
can see that most of the data lies in Intentional Move region. The
PCCs between gaze positions and head rotation velocities in different
regions are shown in Table 3, demonstrating that the linear correlation
between gaze position and head rotation velocity in Intentional Move
region is significantly stronger than in Static and Sudden Move regions,
coinciding with our observations. Furthermore, the linear correlation
in Intentional Move region is higher than the whole region, which
validates the effectiveness of analyzing head velocity in divided regions
rather than in the whole region.

Static Intentional Sudden
Horizontal 5.55% 91.45% 3.00%

Vertical 4.54% 90.69% 4.77%

Table 2: Distribution of data in different regions. Most of the data lies
in Intentional Move region and only a small portion of the data lies in
Static and Sudden Move regions.

Static Intentional Sudden Whole
PCC(vx) 0.1345 0.5883 0.1511 0.5641
PCC(vy) 0.1484 0.4969 -0.0906 0.4132

Table 3: The PCCs between gaze position and head rotation velocity in
different regions. The PCC in Intentional Move region is significantly
larger than it is in Static and Sudden Move regions and is better than
the whole region. The correlations in Static and Sudden Move regions
are rather small.

We also calculate the PCC between gaze position and head rotation
acceleration and get 0.1134 in the horizontal direction and 0.0132 in
the vertical direction. This result shows that there exists a weak linear
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correlation in the horizontal direction and thus we include horizontal
head rotation acceleration in our model (Equation 1).

4.3 Eye-Head Latency
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Fig. 4: Pearson’s correlation coefficients between gaze positions and
delayed head rotation angular velocities in Intentional Move regions of
the horizontal (left) and vertical (right) directions, respectively. Each
graph with a peak value of PCC demonstrates the exact latency between
the gaze movement and the head rotation.

Many prior works [1,35,38] have revealed that there exists a latency
in eye-head coordination. Eye movements usually happen before head
movements [35, 38] and the latency varies with different head velocity
regions [1]. This suggests that the eye-head coordination model may
be more accurate when taking the eye-head latency into consideration.
To validate this, we insert a continuously changing time delay between
gaze positions and head rotation velocities in the horizontal and vertical
Intentional Move regions and calculate a series of PCCs between them.
From the graphs in Fig. 4, we can see that the eye-head coordination
performs better when the eye movements are properly delayed, and this
observation agrees with previous findings that eye movements usually
precede head movements [35, 38]. The latency at which the PCC
reaches its peak (Fig. 4) lies in the range proposed by Biguer et al. [1],
which is about 20−200ms. It varies in horizontal and vertical directions
(Fig. 4), which aligns with previous findings that eye-head coordination
differs in horizontal and vertical directions [13]. In fact, there is no
constant latency between eye movements and head movements because
it may change with gaze direction [1]. For simplicity, we consider the
delay time at the PCC’s peak point (Fig. 4) as the underlying latency
and introduce delay constants into our model (Equation 1) by setting
∆tx1 = 140ms and ∆ty1 = 70ms.

4.4 Saccade Analysis
There generally exists a special gaze pattern called a saccade, which
refers to a quick, simultaneous movement of both eyes in the same
direction between two or more phases of fixation. When saccades occur,
gaze positions change rapidly and are quite difficult to predict. To
analyze saccades in our dataset, we set a threshold vs for the gaze speed.
A saccade starts when the gaze speed exceeds vs and it ends when
gaze speed falls below vs. We set vs = 75◦/s as [13] and extract the
vertical and horizontal saccades. We gather statistics of the amplitude
of each saccade, which is expressed using the angular distance between
the saccade’s start point and end point (Fig. 5, top). We can see that
the amplitudes of most of the saccades are not larger than 5◦, which
means these saccades will have little impact on applications like gaze-
contingent rendering where the central foveal radius is set to 15◦ [26].
Furthermore, the durations of most of the saccades are very short (Fig. 5,
bottom) and the total durations of horizontal and vertical saccades take
up only 1.44% and 1.06% of the total gaze duration, respectively.
We also analyze the frequency of saccades in different head velocity
regions (Table 4) and observe that saccades are more likely to occur in
Sudden Move region, which is only a small portion of the whole dataset
(Table 2). The frequency of saccades is very low across all regions
(Table 4), ensuring that gaze prediction using our dataset is practicable
to some extent.

5 PREDICTION METHOD

In this section, we use our eye-head coordination model (Equation 1)
for realtime gaze prediction. Since eye-head coordination is distinct
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Fig. 5: Saccades in our dataset. Top: Amplitudes of horizontal and
vertical saccades. Bottom: Durations of horizontal and vertical sac-
cades. Most of the saccades are very short with amplitudes <= 5◦ and
durations <=20 ms. This demonstrates that saccades in our dataset
have little impact on the eye-head linear correlation.

Static Intentional Sudden
Horizontal 0.68% 1.40% 3.85%

Vertical 1.05% 1.00% 2.04%

Table 4: The frequency of saccades in different head velocity regions.
This demonstrates that saccades occur more frequently in Sudden Move
region than in Static and Intentional Move regions.

in different head rotation velocity regions, we treat each region in a
different manner to predict gaze position x̃g in the horizontal direction
and ỹg in the vertical direction.

When the velocity lies in Static region, we predict gaze positions in
the corresponding direction using

x̃g = Ex, ỹg = Ey, (2)

where Ex and Ey are the expectations of horizontal and vertical gaze
positions, respectively, and the corresponding head velocities of which
fall into this region.

When the velocity is in Intentional Move region, we present a method
that can adaptively determine the effect of head rotation velocity and
predict the head velocity in the near future using

x̃g =αx · ṽhx(t +∆tx)+βx ·ahx +bx · xS + cx,

ỹg =αy · ṽhy(t +∆ty)+by · yS + cy,
(3)

where ṽhx and ṽhy are the predicted head rotation angular velocities,
xS and yS are the salient positions, ahx is the head rotation angular
acceleration in the X axis, and cx and cy are the combinations of other
factors. All the coefficients (αx,αy,βx,bx,by,cx,cy) in Equation 3 could
be obtained by data fitting, which will be discussed in detail later.

When the velocity is in Sudden Move region, the gaze positions can
be predicted by the mean values of former predictions using

x̃g = µ(X̃g), ỹg = µ(Ỹg), (4)

where µ(X̃g) and µ(Ỹg) are the average gaze positions predicted during
the past 600 ms.

5.1 Static Region
When the velocity falls into Static region, the eye-head linear corre-
lation is not obvious, according to Table 3. We propose utilizing the
expectation of gaze positions in this region as our prediction (Equa-
tion 2). We calculate the statistical mean of the gaze positions in this
region and obtain −0.05◦ in the X axis and −1.83◦ in the Y axis. We
herein set Ex =−0.05◦ and Ey =−1.83◦ for practical use.
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5.2 Intentional Move Region
Although the eye-head linear correlation is conspicuous in Intentional
Move region, the magnitude of the influence will vary for different
individuals in different scenes. To solve this problem, we propose a
method to evaluate the impact adaptively. In addition, eye movement
happens before head movement (Sect. 4.3) and an eye-head latency
is introduced in our model (Equation 1). To predict realtime gaze
positions, we first predict the head rotation velocity. Furthermore, the
influences of content and horizontal head rotation acceleration are also
considered.

To explore the impact of head rotation velocity on a realtime gaze
position, we transform Equation 1 to a simplified form:

xg = αx · vhx + γx,

yg = αy · vhy + γy,
(5)

where xg and yg are the gaze positions, αx and αy stand for the mag-
nitude of the head velocity’s influence on gaze position, and γx and γy
are the combinations of other entries. We employ the simplified model
(Equation 5) on every single piece of data (single user’s data in a single
scene) separately and evaluate αx and αy by linear fitting. As a result,
we find that αx and αy fluctuate a lot among different pieces of data.
Thus, a more reasonable way of employing our model is to determine
αx and αy adaptively.

We observe that the greater the variation in head velocity, the less
the gaze positions are influenced by head movement, which means the
magnitude of the head velocity’s influence may be negatively related
to the standard deviation of the velocity. To validate this important
underlying mechanism, we utilize PCC to analyze their correlation
and get -0.6596 in the horizontal direction and -0.5878 in the vertical
direction. The result corresponds with our observation. We herein
adaptively compute αx and αy in Equation 3 using

αx = kx ·σ(vhx)+ `x,

αy = ky ·σ(vhy)+ `y,
(6)

where αx and αy are the influences of head velocity and σ(vhx) and
σ(vhy) are the standard deviations of the velocities. For realtime pre-
diction, we utilize the standard deviation of velocity data in the past 10
seconds. All the coefficients (kx, ky, `x, `y) in Equation 6 are obtained
by data fitting, which will be discussed below.

Analysis in Sect. 4.3 has revealed that head movement lags behind
eye movement. Thus, our method for predicting gaze position should
predict head velocity first. With this in mind, we assume that head
motion accelerates in a short period of time and then we predict the
next head velocities using this relationship:

ṽhx(t +∆tx) = vhx(t)+µ(ahx) ·∆tx,
ṽhy(t +∆ty) = vhy(t)+µ(ahy) ·∆ty,

(7)

where ṽhx and ṽhy are the predicted velocities, vhx and vhy are the real
velocities that are recorded from IMU, ∆tx and ∆ty are the time intervals
between the predicted velocities and the current velocities, and µ(ahx)
and µ(ahy) are the average accelerations in the past 20 ms. ∆tx and ∆ty
are obtained by data fitting.

We also take the impact from the content of an HMD image into
consideration when predicting gaze positions. The saliency information
of the scenes will facilitate the prediction. Since extracting a saliency
map is usually time-consuming and cannot fulfill the requirement of
realtime computation [3], we only calculate the saliency maps within
the region where gaze positions frequently occur. We analyze the
distribution of gaze positions and find that most (99.8%) of the data
lies in the central region with a radius of 35◦. Thus, we only utilize
the saliency map of the central 35◦ region. Since the scenes are static
and there is no sudden change in the content, we extract saliency maps
only on sparse key frames to improve the computational efficiency.
More specifically, we extract the realtime scenes every 250ms as key
frames and calculate the saliency maps inside the central region using
the state-of-the-art SAM-ResNet saliency predictor [10].

To explore the correlation between saliency maps and realtime gaze
positions, we divide the saliency maps into 28×28 subregions (the side
length of each subregion is 2.5◦) and calculate the average saliency
value for each subregion (Fig. 6). The center of the subregion with the
maximal average saliency value is regarded as the salient position for
the next 250ms. We evaluate the PCC between salient positions and
gaze positions and find that there exists a correlation between them:
0.0745 in the horizontal direction and 0.0723 in the vertical direction.
The salient positions are linearly independent (PCC< 0.025) with head
rotation velocities and head rotation accelerations and thus we introduce
salient positions in Equation 3.

Fig. 6: We highlight the salient positions computed by our method.
Left: Test scenes; Middle: Saliency maps of the central 35◦ region (i.e.
the green rectangles in the scenes); Right: Subregions in a saliency map.
The salient positions are the centers of the subregions with maximum
average saliency values (i.e. the white grids in the subregions).

Since head rotation acceleration contributes a linear correlation with
gaze position in the horizontal direction (Sect. 4.2), we also add them
into our method (Equation 3).

The data gathered from 5 scenes out of the 7 scenes (around 77% of
the total data) are used to train our model and the remaining 2 scenes
(23% of the total data, including an indoor scene and an outdoor scene)
are used for testing. We solve all the coefficients in Equation 3 using
the least squares method and get these parameters: kx =−0.0015, `x =
0.2491, ∆tx = 0.1480, βx = 0.0006, bx = 0.0344, cx = 0.1777, ky =
−0.0053, `y = 0.5293, ∆ty = 0.0304, by = 0.0503, and cy =−2.5249.

5.3 Sudden Move Region
When head velocity is in Sudden Move region, the acute head move-
ments in this region are mainly caused by sudden accidents, which
may break the eye-head coordination. Since saccades seldom occur
in our dataset (Sect. 4.4), a reasonable prediction strategy is to keep
the gaze position stable relative to its precedent positions. Whereupon,
we compute the gaze positions according to previous predictions using
Equation 4.

6 RESULTS

Evaluation on the performance of our model is presented in this section.
We first propose some baselines and evaluation metrics for the task of
realtime gaze prediction. Then we demonstrate that our model performs
best when compared with the baselines. We conduct an ablation study
to validate the effectiveness of each component in our model and we
prove the effectiveness of our region division strategy. We also apply
our model to gaze-contingent rendering and verify the effectiveness
of our model through a user study. We finally evaluate our model’s
performance in a task-oriented situation and find that our model still
performs better than the baselines.

6.1 Baselines and Evaluation Metrics
6.1.1 Baselines
For the task of realtime gaze prediction, we introduce some baselines
for evaluation. Recent work has indicated that observers tend to gaze at
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the center of an image, irrespective of its content [7]. The center bias
has also been revealed in virtual reality applications [29]. Therefore, a
simple but meaningful baseline is to use the screen center as the gaze
position. In addition, we also utilize the statistical mean of all the gaze
positions as another baseline, which is (0.03◦, −2.34◦) from statistics.
To evaluate the performance of utilizing only saliency information,
salient position (Sect. 5.2) is also included as one of the baselines.

6.1.2 Evaluation Metrics
There are many existing evaluation metrics for saliency prediction, but
evaluation metrics for the task of realtime gaze prediction have not
been well studied. Therefore, we present a few evaluation metrics
for realtime gaze prediction. Since our goal is to figure out the users’
realtime gaze positions, our evaluation measure is set as the angular
distance (visual angle) between the predicted gaze position and the
ground truth gaze position. In addition, for many applications like
gaze-contingent rendering, the gaze region plays a more important role
than a single gaze position. In this case, we use both a precision rate,
the proportion of the overlapped region at the predicted gaze region,
and a recall rate, the proportion of the overlapped region at the ground
truth gaze region, as our evaluation metrics.

6.2 Model Evaluation
6.2.1 Performance Evaluation
Angular Distance: To evaluate the performance of our model, we first
apply it to the test data to compute the predicted gaze positions. We
calculate the mean value and standard deviation of angular distances
between the ground truth gaze positions and the predicted gaze positions
and indicate them in Table 5, which shows that our model performs
better than the baselines in terms of both mean value and standard
deviation. We also calculate the cumulative distribution function (CDF)
of the angular distances for performance evaluation (Fig. 7 left). The
higher the CDF curve, the better the performance. The result shows
that our model achieves the best performance in terms of CDF. We
can see that the angular distances of our model are already very small
compared with the field of view of the HMD, which is 110◦ for our
device. Fig. 1 also highlights the prediction results using our model.

Ours Mean Center Saliency
Mean 8.52◦ 10.93◦ 11.16◦ 21.23◦

Std 5.66◦ 6.43◦ 6.44◦ 12.10◦

Table 5: Comparison of angular distances between our model and the
baselines. Our model performs best in terms of both mean value and
standard deviation.
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Fig. 7: Comparison on performance. Left: Cumulative distribution
function of the angular distances. Right: Precision and recall rates of
our model and the mean baseline at different central radii. Our model
outperforms these baselines in terms of the CDF, precision rate, and
recall rate. Our recall rate at the central radius of 20◦ reaches 85.92%,
which can satisfy the requirements of many VR applications.

Precision and Recall Rates: To calculate the precision and recall
rates, we should first determine the gaze region. We set the central
radius to 15◦, as used in gaze-contingent rendering [26], and treat the
central region of the gaze position as the gaze region. For specific tasks
like gaze-contingent rendering, the recall rate is generally the main

concern and thus we enlarge the central radius of the predicted gaze
region (central radius of the ground truth will remain unchanged) to
obtain a better recall rate. The right of Fig. 7 shows that the precision
and recall rates of our model are both better than the mean baseline (the
best one according to Table 5) at different central radii. Therefore, we
suggest an appropriate central radius with 20◦ that can make the recall
rate of our model reach 85.92%, and the specification of such a gaze
region with a high recall rate can be useful for many applications.

6.2.2 Ablation Study
To evaluate the effectiveness of each component in our model, we
perform an ablation study by removing one component at a time and
retraining the ablated models. Since our model mainly works in Inten-
tional Move region, we test the ablated models only when the horizontal
and vertical head velocities are both in Intentional Move region. Ta-
ble 6 shows the performances of the ablated models. We observe that
each component in our model indeed contributes to gaze prediction.
Moreover, the head velocity component plays the most important role
in our eye-head coordination model.

In the previous analysis (Sect. 4.2), we classify the head velocities
into three regions and only train our model (Equation 3) in Intentional
Move region. To validate the effectiveness of this classification, we
further retrain our model for the entire region without classification to
evaluate its performance. In terms of angular distance, the newly trained
model obtains a mean value of 8.80◦ and a standard deviation of 6.07◦,
which infers that it cannot outperform our primordial model when
compared with our results shown in Table 5. These results demonstrate
the effectiveness of our strategy of using region classification.

The above results also manifest the sufficiency of PCC, which can
be employed to determine the boundaries of the velocity regions and
to single out such factors (head velocity, acceleration, etc.) that may
facilitate the task of gaze prediction in our modeling stage. Other than
PCC, there still exist some rank correlation coefficients (e.g., Spear-
man’s rank correlation coefficient, Kendall rank correlation coefficient,
etc.) that can also be used to measure the correlation between two vari-
ables. However, rank correlation coefficients are used to measure the
monotonic correlation between two variables, while PCC can measure
a specific correlation (linear correlation). Since our goal is to compute
the correlation between gaze positions and other factors efficiently to
formulate the eye-head coordination model, PCC is more suitable for
completing such a task than rank correlation coefficients.

6.2.3 Runtime Performance
Our model utilizes head pose information and saliency maps from
the scenes. The head pose is obtained through the IMU equipped on
the HMD. Thus, the head pose information can be accessed in a very
short time (less than 1 ms). Calculation of the saliency map can take
considerable time, so we only compute the saliency maps of the central
regions of the sampled scenes (Sect. 5.2). The average running time
of our method for predicting a single gaze position is 4.5 ms and this
result shows that our model can be employed in realtime applications.

6.3 User Study
6.3.1 Gaze-Contingent Rendering
To further demonstrate the usefulness of our model, we apply our
model to gaze-contingent rendering (or foveated rendering) techniques
[16, 26]. Gaze-contingent rendering decreases rendering quality in the
peripheral region while maintaining high fidelity in the foveal region.
We set the central radius of the foveal region to 20◦ and the width
of the blending border to 60 pixels. Fig. 8 exhibits the result of our
gaze-contingent rendering. Other than our model, we also utilize the
gaze data from an eye tracker as the ground truth and use the statistical
mean (the best baseline according to Table 5) as our baseline.

We conduct a user study to evaluate the availability of our model
when applied to gaze-contingent rendering. In the experiment, each
participant was asked to freely explore two randomly-assigned scenes
with both bright and dim lighting (i.e. 4 tests in total), similar to
the process of data collection. In each test, each participant should
make comparisons twice (but in no fixed order): our model vs. ground
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Ours w/o Acceleration w/o Std w/o Saliency w/o Latency w/o Velocity Mean Baseline
Mean 8.42◦ 8.46◦ 8.46◦ 8.48◦ 8.49◦ 10.85◦ 10.96◦

Std 5.63◦ 5.65◦ 5.65◦ 5.66◦ 5.65◦ 6.36◦ 6.42◦

Table 6: Angular distances of the ablated models. Each component in our model helps improve our model’s accuracy. In addition, the head
velocity component plays the most important role in our model and this is why we call our model an eye-head coordination model.

Fig. 8: Application of our gaze prediction to gaze-contingent render-
ing. Left: Rendered in normal mode; Right: Rendered using gaze-
contingent rendering mode. Gaze-contingent rendering decreases ren-
dering quality in the peripheral region while maintaining high fidelity
in the foveal region. The inner circle is the foveal region rendered with
high quality, the outer region is the peripheral region rendered with low
quality and the blending border denotes the transitional region.

truth, and our model vs. mean baseline. To make the user study
objective and fair, the competitors involved in a comparison present
randomly, without any specific order. It generally takes around 2
minutes per comparison in a test, and the exploration using one side in
the comparison will last for 1 minute before switching to the other. To
collect users’ responses, we run a two-alternative forced choice (2AFC)
test that requires the participants to indicate which one they prefer with
higher quality from these choices.

A total of 15 participants (12 male and 3 female, ages 18-30) who
had never been involved in the data collection experiment participated
in the next user study. We collected all the responses and found that
the ground truth is preferred by 51.67% of the total responses and there
is no significant difference between our model and the ground truth
(t-test, p > 0.75). When comparing our model with the baseline, we
find that 71.67% of the total responses preferred the results from our
model, and this result is statistically significant (t-test, p < 0.01).

These results show that our model can be a good alternative to using
eye trackers in immersive VR applications.

6.3.2 Performance on Simple Task
In task-oriented applications like games, users’ gaze behaviors may
be seriously influenced by the tasks assigned to them. Although our
method is designed for free exploration of virtual environments in
which users are given no specific tasks, it’s worthy applying our model
to such task-oriented scenarios and evaluating its performance.

We conducted the following experiments to analyze the users’ gaze
behaviors when a simple task was assigned to them. Specifically, users
were asked to explore two scenes and complete the tasks assigned to
them as shown in Fig. 9. In the gym scenario with many pieces of
sports equipment (basketball, volleyball, tennis ball, etc.) randomly
placed, the users were asked to find them and choose their favorite
ones. In the city scenario with many trees along the street, the users
were asked to count the number of trees during their exploration. Each
exploration lasts for at least 2 minutes and 12 participants (9 male, 3
female, ages 18-25) participate in the experiment. We collect these data
fro later analysis in the same way as described in Sect. 3.

We utilize the statistical mean of the newly collected gaze positions
as the mean baseline, which is (0.57◦,−2.14◦), and evaluate our already
trained model on the newly collected data. We can see from Table 7 that
our model still performs best when compared with the baselines and
this result further proves the effectiveness of our model. However, due
to the influence of the tasks, our model shows a smaller improvement

Fig. 9: Simple task-oriented scenarios. Left: Users were asked to look
for the sports equipment (basketball, volleyball, tennis ball, etc.) and
choose their favorite one in a gym. Right: Users were asked to count
the number of trees during their exploration in a urban area.

relative to the best baseline when compared with the no-task situations
(Table 5); the relative improvement of the angular distance decreases
from 22.0% to 14.2%. This result inspires us to propose a new eye-
head coordination model that takes specific tasks into consideration for
task-oriented situations in our future work.

Ours Mean Center Saliency
Mean 8.99◦ 10.48◦ 10.69◦ 18.49◦

Std 5.76◦ 6.00◦ 6.03◦ 13.11◦

Table 7: Comparisons of angular distances between our model and the
baselines for the simple tasks. Our model still outperforms others in
terms of both mean value and standard deviation.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We present a novel, data-driven eye-head coordination model (SGaze)
that can be used for realtime gaze prediction for immersive HMD-based
applications. Our approach does not require any special hardware
(e.g. an eye tracker) and is based on dataset collection and statistical
techniques. In particular, we observe that there exists a range within
which gaze positions have a strong linear correlation with head rotation
angular velocities. We propose an eye-head coordination model using
statistical analysis. We have evaluated our model for realtime gaze
prediction and gaze-contingent rendering and the preliminary results
are promising. Our model also outperforms these baselines when
applied to such scenarios with simple tasks.

Our approach has some limitations. Our dataset is constructed
through each user performing a free exploration of the virtual scenes in
a passive way, as classified in prior work [11], without performing any
specific tasks. Therefore, our data-driven model does not necessarily
handle other types of VR applications well. The mechanism of gaze be-
havior in virtual reality is intricate and many aspects in the model (e.g.,
Hx and Hy shown in Equation 1) have not been explored thoroughly in
our analysis. In terms of context, the saliency from realtime images can
only give expression to 2D space. However, users generally interact
directly with 3D objects in an immersive VR environment. It may help
improve our model to explore the relationship between gaze behavior
and a 3D representation of a scene (e.g., a depth map). Furthermore,
the influences from sound and dynamic objects in a scenario have not
been taken into consideration. In practice, sound plays an important
role in an immersive environment and dynamic scenes can result in a
different gaze behavior. Moreover, we can use other techniques such
as deep learning or other statistical methods (e.g., rank correlation) to
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derive more accurate models and evaluate their performance for general
VR applications. Since our model is built on a relative head rotation
velocity coordinate system (Fig. 3 left), any other kinds of head pose
tracking devices that can convert the head pose data into such a relative
coordinate system with high accuracy have the potential to be applied
to gaze prediction.

Our model also offers the potential to improve existing saliency mod-
els, although our model aims at predicting realtime gaze positions rather
than post-processing saliency maps like Sitzmann et al’s method [29].
After collecting an adequate number of users’ realtime exploration data
(head velocity, acceleration, etc.) for the same scene, our model can be
employed to predict realtime gaze positions and these gaze positions
will also form a saliency map after a long period of data gathering,
which can benefit existing saliency models due to our model’s high
accuracy in realtime conditions. However, this approach of generating
saliency maps using our model will be time-consuming and is not as
elegant as Sitzmann et al’s method [29]. Improving saliency models
efficiently using our model is also an interesting avenue for future work.
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[20] M. Kümmerer, T. S. Wallis, L. A. Gatys, and M. Bethge. Understanding
low-and high-level contributions to fixation prediction. In 2017 IEEE
International Conference on Computer Vision, pp. 4799–4808, 2017.

[21] V. Laurutis and D. Robinson. The vestibulo-ocular reflex during human
saccadic eye movements. The Journal of Physiology, 373(1):209–233,
1986.

[22] P. Majaranta. Gaze Interaction and Applications of Eye Tracking: Ad-
vances in Assistive Technologies: Advances in Assistive Technologies. IGI
Global, 2011.

[23] R. Nakashima, Y. Fang, Y. Hatori, A. Hiratani, K. Matsumiya, I. Kuriki,
and S. Shioiri. Saliency-based gaze prediction based on head direction.
Vision research, 117:59–66, 2015.

[24] R. Nakashima and S. Shioiri. Why do we move our head to look at an
object in our peripheral region? lateral viewing interferes with attentive
search. PloS one, 9(3):e92284, 2014.

[25] A. Oliva, A. Torralba, M. S. Castelhano, and J. M. Henderson. Top-down
control of visual attention in object detection. In Image processing, 2003.
icip 2003. proceedings. 2003 international conference on, vol. 1, pp. I–253.
IEEE, 2003.

[26] A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty, D. Lue-
bke, and A. Lefohn. Towards foveated rendering for gaze-tracked virtual
reality. ACM Trans. Graph., 35(6):179:1–179:12, Nov. 2016.

[27] T. Pozzo, A. Berthoz, and L. Lefort. Head stabilization during various
locomotor tasks in humans. Experimental brain research, 82(1):97–106,
1990.

[28] Y. Rai, J. Gutiérrez, and P. Le Callet. A dataset of head and eye movements
for 360 degree images. In Proceedings of the 8th ACM on Multimedia
Systems Conference, pp. 205–210. ACM, 2017.

[29] V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez, B. Masia,
and G. Wetzstein. Saliency in vr: How do people explore virtual envi-
ronments? IEEE Transactions on Visualization and Computer Graphics
(IEEE VR 2018), 24(4):1633–1642, April 2018.

[30] J. S. Stahl. Amplitude of human head movements associated with horizon-
tal saccades. Experimental brain research, 126(1):41–54, 1999.

[31] N. T. Swafford, D. Cosker, and K. Mitchell. Latency aware foveated ren-
dering in unreal engine 4. In Proceedings of the 12th European Conference
on Visual Media Production, p. 17. ACM, 2015.

[32] N. T. Swafford, J. A. Iglesias-Guitian, C. Koniaris, B. Moon, D. Cosker,
and K. Mitchell. User, metric, and computational evaluation of foveated
rendering methods. In Proceedings of the ACM Symposium on Applied
Perception, pp. 7–14. ACM, 2016.

[33] V. Tanriverdi and R. J. K. Jacob. Interacting with eye movements in virtual
environments. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’00, pp. 265–272. ACM, New York,
NY, USA, 2000.

[34] W. Wang, J. Shen, and L. Shao. Consistent video saliency using local
gradient flow optimization and global refinement. IEEE Transactions on
Image Processing, 24(11):4185–4196, 2015.

[35] D. Whittington, M.-C. Hepp-Reymond, and W. Flood. Eye and head
movements to auditory targets. Experimental Brain Research, 41(3-4):358–
363, 1981.

[36] Y. Xu, Y. Dong, J. Wu, Z. Sun, Z. Shi, J. Yu, and S. Gao. Gaze prediction
in dynamic 360 immersive videos. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 5333–5342, 2018.

[37] A. Yarbus. Eye movements and vision. 1967. New York, 1967.
[38] W. H. Zangemeister and L. Stark. Active head rotations and eye-head

coordination. Annals of the New York Academy of Sciences, 374(1):540–
559, 1981.

9


	Introduction
	Related Work
	Gaze Prediction
	Eye-Head Coordination
	Eye Tracking and Gaze Positions

	Gaze Data Collection
	Stimuli
	Participants
	System Details
	Procedure

	SGaze: Eye-head Coordination Model
	Head Movement
	Eye-Head Linear Correlation
	Eye-Head Latency
	Saccade Analysis

	Prediction Method
	Static Region
	Intentional Move Region
	Sudden Move Region

	Results
	Baselines and Evaluation Metrics
	Baselines
	Evaluation Metrics

	Model Evaluation
	Performance Evaluation
	blackAblation Study
	Runtime Performance

	blackUser Study
	Gaze-Contingent Rendering
	blackPerformance on Simple Task


	Conclusion, Limitations, and Future Work

