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Latest gaze estimation methods require large-scale training data but their collection and exchange pose significant
privacy risks. We propose PrivatEyes – the first privacy-enhancing training approach for appearance-based gaze
estimation based on federated learning (FL) and secure multi-party computation (MPC). PrivatEyes enables
training gaze estimators on multiple local datasets across different users and server-based secure aggregation of
the individual estimators’ updates. PrivatEyes guarantees that individual gaze data remains private even if a
majority of the aggregating servers is malicious. We also introduce a new data leakage attack DualView that
shows that PrivatEyes limits the leakage of private training data more effectively than previous approaches.
Evaluations on the MPIIGaze, MPIIFaceGaze, GazeCapture, and NVGaze datasets further show that the
improved privacy does not lead to a lower gaze estimation accuracy or substantially higher computational costs –
both of which are on par with its non-secure counterparts.
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1 INTRODUCTION
Starting with pioneering work by Zhang et al. [Zhang et al. 2015, 2017c], research on appearance-
based gaze estimation using deep learning has spurred an increasing number of papers in recent years.
Much of the improvements in terms of gaze estimation accuracy can be attributed to the availability
of ever-larger training datasets [Smith et al. 2013; Sugano et al. 2014; Zhang et al. 2020b, 2019].
Large eye image training data are required to capture the significant variability in eye appearances
across users, tasks, and settings. Performance could be improved significantly using data collected
in the wild, e.g., on portable devices used during everyday activities [Bâce et al. 2020; Krafka et al.
2016; Zhang et al. 2019]. As such, it is likely that continual learning approaches will also be used in
the future to collect large-scale data in the background and train personalised gaze estimators across
multiple devices [Zhang et al. 2018].
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Large-scale collection and transfer of gaze data or gaze estimation models over networks, however,
pose significant privacy risks, such as information leakage or misuse of gaze data copies. With
eye tracking becoming pervasive [Bulling and Gellersen 2010; Tonsen et al. 2017] and integrated
into an ever-increasing number of personal devices [Bâce et al. 2020; Huang et al. 2016a, 2017],
these privacy risks increase further. This is particularly critical given that gaze data contains rich
personal information, such as gender [Sammaknejad et al. 2017], identity [Cantoni et al. 2015],
personality traits [Hoppe et al. 2018], user activities [Bulling et al. 2013; Steil and Bulling 2015;
Zhang et al. 2017b], attentive [Faber et al. 2018; Vertegaal et al. 2003] and cognitive states [Bulling
and Roggen 2011; Huang et al. 2016b], or mental disorders [Holzman et al. 1974; Hutton et al. 1984].
Despite these risks, privacy has so far largely been neglected by the gaze estimation community.
One notable exception is [Elfares et al. 2022] in which the authors have proposed to increase the
privacy of gaze estimators using federated learning (FL) [McMahan et al. 2017]. Their method
allows training gaze estimators across a large number of clients without directly revealing their
private data, while adapting to the heterogeneous gaze data distributions (e.g. gaze range, head pose,
illumination condition, and personal appearance). However, it still requires each client to reveal her
individually trained models (IU) to an aggregating server and therewith remains susceptible to a large
number of attacks, leaking information about the gaze data inputs as we show in this paper.

To address these limitations, we propose PrivatEyes – a novel training approach for appearance-
based gaze estimation that combines FL with secure multi-party computation (MPC) (see Figure 1).
In contrast to [Elfares et al. 2022], PrivatEyes uses 𝑛 instead of only one aggregating server. Our
MPC approach then allows a gaze estimator to be jointly trained by the clients and the 𝑛 servers
using shared secret representations of eye and face image data while keeping the data itself private
to each party. By using MPC, it is guaranteed that no server learns the individual inputs or the
individual model updates IU of the clients even if all-but-one server are malicious. We show that
our combination of FL and MPC nevertheless only comes with a small computational overhead (see
Section 5 for the exact numbers). In addition, through empirical evaluation on the MPIIGaze [Zhang
et al. 2015], MPIIFaceGaze [Zhang et al. 2017c], GazeCapture [Krafka et al. 2016], and NVGaze
[Kim et al. 2019] datasets, we show that PrivatEyes maintains an on-par gaze estimation performance
as the non-secure state-of-the-art [Elfares et al. 2022], is domain-agnostic (i.e. can be used with
any deep learning-based gaze estimation model), and can scale to ∼ 1.5𝑘 clients (i.e. the size of
the largest evaluated data set GazeCapture). We note that PrivatEyes works with any (even larger)
number of clients. We demonstrate the privacy advantages of our method against well-established
data leakage attacks and our new DualView attack, which is able to simultaneously attack users’
appearance (View1: how the user looks like) as well as their gaze distribution (View2: where the user
is looking). In summary, our work makes the following contributions:

• We introduce PrivatEyes – the first privacy-preserving training approach for appearance-based gaze
estimation that combines federated learning and secure multi-party computation and guarantees
that data collectors (servers) do not learn individual inputs by clients, even if all-but-one data
collectors are malicious.

• We further propose DualView – a novel data leakage attack to empirically demonstrate and measure
the potential privacy risks associated with gaze estimation models.

• We implemented both PrivatEyes and the attack DualView. Our evaluation on several gaze estima-
tion benchmark datasets shows that PrivatEyes reaches the same model performance and scalability
as non-secure alternatives like [Elfares et al. 2022] with negligible computational overhead.

• We compare PrivatEyes to data centre training and federated learning [Elfares et al. 2022] w.r.t.
their privacy leakage when attacked by DualView and other well-established data leakage attacks.
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Fig. 1. PrivatEyes combines federated learning (FL) and secure multi-party computation (MPC) for
privacy-enhancing training of appearance-based gaze estimation methods (see Sections 2 and 4.1).
Clients 𝐶 𝑗 locally train the gaze estimation model on their private data. Each client 𝐶 𝑗 splits her
individually trained model parameters (IU) 𝑎 𝑗 into 𝑛 secret shares, i.e. in this example 𝑛 = 3. Each
server 𝑆𝑖 , 1 ≤ 𝑖, ≤ 𝑛 receives its respective share of each 𝑎 𝑗 , e.g. 𝑆1 receives the share 5 of 𝑎1 = 3,
3 of 𝑎2 = 10 and 16 of 𝑎3 = 8. Then each server aggregates the different shares, e.g. 𝑆1 computes
5 + 3 + 16mod 23 = 1, and sends the result (i.e. output model OM) to all clients. The clients compute
the average (1 + 9 + 11)/3 = 7, but nothing more.

We show that PrivatEyes provides significantly better privacy guarantees, e.g. for the state-of-the-
art centralised FL scheme [Elfares et al. 2022] DualView reconstructs 15/15 participants from
MPIIGaze/MPIIFaceGaze accurately but 0/15 for PrivatEyes.

2 BACKGROUND
Federated learning. Federated learning [McMahan et al. 2017] is a machine learning (ML) approach
where multiple clients (e.g. gaze data owners) collaborate in solving an ML problem by training
an ML model jointly (e.g. gaze estimator) on their local training dataset without sharing their data.
An aggregation server broadcasts an initial ML model to all clients. Clients train the model on their
local data samples without transferring the raw data, instead, individual updates IU (i.e. the ML
model parameters) are sent to the server. The server aggregates the individual updates to a output
model OM which is returned to all clients for the next training round. This process is repeated until
the model converges or a certain number of rounds is reached. FL training can be performed in
a centralised (client-server) or decentralised (peer-to-peer) fashion and can be classified as cross-
device or cross-silo depending on whether clients are mobile devices or organisations (e.g., medical,
financial, or geo-distributed data centres) that train on siloed data, respectively. FL can be further
categorised into horizontal or vertical settings according to how data is partitioned among the clients
in the feature and sample spaces. In horizontal FL, clients share overlapping data features that differ
in data samples while the opposite is true in vertical FL [Kairouz et al. 2019].

Secure multi-party computation. In the basic secure multi-party computation (MPC) setting, a set
of parties 𝑃1, . . . , 𝑃𝑛 is considered where (i) each party has some (private) input, i.e., input that the
party does not want to reveal to other parties, including external observers, and ii) the parties would
like to compute a previously agreed-upon function over their private inputs without revealing any
information apart from the actual output of this function. For example, the parties might want to
compute their average age without revealing their respective individual age to each other. Intuitively,
this can be achieved by using a completely trusted third-party (a notary): The parties could give their
private input to the notary, and the notary (correctly) computes the agreed-upon function and reveals
the outcome to the parties, but never leaks the individual inputs of the parties to other parties or
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external observers. An MPC protocol achieves exactly the same result without actually using a notary.
Instead, the MPC protocols allow the parties to exchange (a series of) specially crafted messages that
allow to compute the result without ever revealing the inputs.

More formally, MPC protocols should ensure (in a mathematically rigorous way) input privacy,
i.e. that no information on the inputs (e.g. the individual age) is leaked apart from what can be
deduced from the output (e.g. the average age). Moreover, we require correctness, i.e. every output
(e.g. the average age) is correct (or the protocol aborts). Furthermore, we require that both input
privacy and correctness still hold if all but one of the computing parties act maliciously, e.g. by
colluding with each other or by deviating from the protocol. This means that a single honest MPC
party still guarantees that inputs remain private and that the result is correct even if all other parties
act maliciously. Note that even if the malicious parties force a protocol abort, e.g. by simple denial of
service, the privacy of inputs is guaranteed. MPC protocols that ensure the aforementioned security
properties are called actively secure against a majority of up to 𝑛 − 1 malicious parties. The currently
best known MPC protocols that provide this security standard are SPDZ [Damgård et al. 2012] and
improvements thereof like Overdrive LowGear [Keller et al. 2018].

We employ these state-of-the-art protocols in a client/server MPC model. That is, we distinguish
between input parties (clients), who provide the inputs on which the function is evaluated, and
compute parties (servers), who carry out the MPC protocol and provide the clients with the output of
the function evaluation. Then as long as one server remains honest, the inputs of all clients remain
private and the result is correct (or the protocol aborts). The client/server model is particularity
well-suited for a setup with (possibly resource-limited) clients and a few (more powerful) servers as
it is common in our gaze applications [Elfares et al. 2022; Kairouz et al. 2019; Zhang et al. 2015].

3 RELATED WORK
Gaze estimation. Gaze estimation methods can generally be categorised as model-based or appearance-
based [Hansen and Ji 2009]. While model-based methods estimate gaze direction from infrared
corneal reflections [Hennessey et al. 2006; Morimoto et al. 2002], or geometric eye shape [Chen
and Ji 2008; Valenti et al. 2011]), appearance-based methods directly regress a 2D or 3D gaze
direction from eye images recorded using an off-the-shelf RGB camera [Baluja and Pomerleau 1993;
Choi et al. 2013; Liang et al. 2013]. Appearance-based methods, particularly those based on deep
learning, were shown to be more robust to varying lighting conditions, gaze ranges, and low image
resolutions than their model-based counterparts [Biswas et al. 2021; Zhang et al. 2015, 2017c]. How-
ever, while gaze estimators can also be trained from synthesised images [Sugano et al. 2014; Wood
et al. 2016a,b], effective training typically requires a large number of real-world training images
[Krafka et al. 2016; Zhang et al. 2020b, 2019]. Despite an increasing number of works and significant
advances in appearance-based gaze estimation methods in recent years, the privacy threats posed
by the requirement for large-scale image datasets collected of individuals remain under-explored
in the community. We address these privacy threats by presenting the first privacy-preserving gaze
estimation scheme PrivatEyes in Section 4.

Privacy-preserving machine learning. Initially, privacy-preserving machine learning either implied
low efficiency [Burkhalter et al. 2021; Chowdhury et al. 2021; Gilad-Bachrach et al. 2016], weak
privacy guarantees [Liu et al. 2017; Mohassel and Rindal 2018; Mohassel and Zhang 2017; Rouhani
et al. 2018], or was restricted to specific setups [Galli et al. 2022; Liu et al. 2017; Mohassel and Zhang
2017]. While the efficiency of distributed ML training has improved with FL, privacy issues endured
due to the lack of provable privacy guarantees [Liu et al. 2022b]. First secure aggregation protocols
based on MPC [Bonawitz et al. 2017] address these issues but either come with a low efficiency
[Bonawitz et al. 2017; Chowdhury et al. 2021; Dong et al. 2021] or restrict to a weak security
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setup, i.e. assume that all servers always follow the MPC protocol [Dong et al. 2021; Fereidooni
et al. 2021; Nguyen et al. 2022; Rathee et al. 2023]. In addition, they have not been adapted to the
requirements of gaze estimation (e.g. the prior eye/face knowledge, the in-the-wild data heterogeneity,
and the computational performance). We are the first to practically combine FL with state-of-the-art
MPC protocols like Overdrive LowGear [Keller et al. 2018] in the context of appearance-based
gaze estimation in order to achieve active security against a dishonest majority of servers and allow
scalability to a large number of clients.

Privacy-enhancing technologies for gaze. Despite mounting concerns, only few previous works
have studied privacy-enhancing technologies for gaze, most of which have focused on gaze behaviour
analysis. A common approach is to use differential privacy (DP), i.e., the idea of adding noise
according to an 𝜖 parameter [Dwork et al. 2014; Steil et al. 2019]. This approach, however, often
comes at the cost of reduced data utility [Bozkir et al. 2021; Li et al. 2021; Liu et al. 2019]. Others
have proposed to add noise in a dataset-dependent manner to increase utility [Bozkir et al. 2021;
Steil et al. 2019], which leads to very weak privacy guarantees [Bozkir et al. 2023; Nissim et al.
2007]. Further DP optimizations, e.g. as in [Kifer and Machanavajjhala 2011], are possible, but come
with a decrease in the model performance. In stark contrast, privacy for gaze estimation has so far
largely been neglected except for [Bozkir et al. 2020; Elfares et al. 2022]. In [Bozkir et al. 2020], a
function-specific (support vector regressor) method is proposed using randomized encodings. This
method is limited by two data owners and does not protect against malicious adversaries. Our work,
therefore aims to fill these gaps and builds on the adaptive federated learning approach proposed
in [Elfares et al. 2022]. Adaptive FL comes with many favourable properties, e.g. it scales well
in the number of clients, can be applied to any ML model and converges quickly even for a large
data heterogeneity across the clients. However, we show in this paper that it remains susceptible to
various data leakage attacks. Our new training schemes PrivatEyes solves this privacy issue while
maintaining the same model performance and comparable computational cost as [Elfares et al. 2022].

Adversarial attacks. ML models are susceptible to a large number of vulnerabilities and attacks. The
trained models can leak information about the private input data through their black-box outputs (e.g.
predictions) or their white-box parameters [Zhang et al. 2020a]. As no prior work has investigated
adversarial attacks on gaze estimation models, in this paper, we aim (i) to analyse these attacks
on gaze data and its training process, (ii) to quantify the amount of information leakage and (iii)
to prevent (or at least minimise the effectiveness of) such attacks through protocols that provide
formal security guarantees, i.e. which do not only protect against a certain attack but provide security
against any (realistic) adversary and attack. Prior works in ML investigated different attacks in
isolation, e.g. model-inversion attacks [Fredrikson et al. 2015; He et al. 2019; Wu et al. 2016] (i.e.
reconstructing the training data) or inference attacks [Bernau et al. 2019; Li et al. 2020; Shokri
et al. 2017] (i.e. inferring private information). Other approaches [Geiping et al. 2020; Hitaj et al.
2017; Zhao et al. 2020] were specific to the FL setup. Given the various different gaze estimation
training approaches, we instead construct a new attack DualView that allows us to attack different
schemes like data centre training, adaptive FL [Elfares et al. 2022] or our own approach PrivatEyes.
Unlike (adversarial) model-inversion attacks [Fredrikson et al. 2015; Hitaj et al. 2017; Zhang et al.
2020a] that reconstruct images that maximally activate the target network, DualView does not only
aim to synthesize realistic features but also tries to consistently associate the reconstructed images
with the appearance and the gaze features of the training set. DualView is further optimized for the
regression task of gaze estimation and therewith differs from classical inference attacks like [Salem
et al. 2020; Shokri et al. 2017; Zhao et al. 2020] which were so far only studied for classification
tasks. We use DualView among other techniques to show the vulnerabilities of FL training. For
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FL applications (without MPC) outside of gaze estimation, similar results have been achieved by
Geiping et al. [Geiping et al. 2020].

4 METHOD
Training accurate and generalisable gaze estimation models requires a large number of training
images to handle the large variability in in-the-wild eye and face appearances. A common solution
is to train gaze estimators collaboratively using gaze data from different owners (a.k.a. clients) but
this raises concerns with the highly privacy-sensitive gaze data. Missing protection of this data
prevents gaze data owners from taking part in the training process and thereby decreases the model
generalisation performance. We address this problem by introducing in a new gaze estimation training
approach PrivatEyes that provides strong security guarantees without hampering training efficiency
or gaze estimation performance. We further construct a new gaze-specific attack that allows us to
quantitatively compare the privacy properties of different gaze estimation training schemes like
adaptive FL [Elfares et al. 2022] or our new scheme PrivatEyes.

4.1 PrivatEyes: Gaze Estimation Training
FL has recently been introduced as a promising approach for training gaze estimation models [Elfares
et al. 2022]. Following [Elfares et al. 2022], we focus on a cross-device centralised horizontal FL
approach, with its support for scalable data distributions and a large number of devices, hence
matching the requirements of large-scale gaze data collection on multiple devices in the wild.
However, centralised FL comes with a major privacy issue: It involves a single central server that
aggregates local updates received from all clients. This results in the server having access to a
significant amount of personal information that could be used to reconstruct (parts of) the original
training data. We address this issue in PrivatEyes by replacing the single server with multiple ones
(with secret sharing) as shown in Figure 1. This allows us to avoid the leakage of individual client
updates and thereby significantly reduce the attack surface.

The training process. Centralised FL with a single server (e.g. [Elfares et al. 2022]) works as follows:
For each of 𝑡 communication rounds the server selects a random cohort 𝐶 of the 𝑁 available clients
and broadcasts a gaze estimation model to these clients with the corresponding hyper-parameters,
weights, biases, number of rounds, and number of local epochs. In the first round (𝑘 = 1) the model
sent is some initial model (e.g. a model pre-trained on public data) and in all following rounds
(1 < 𝑘 ≤ 𝑡) it is the output model (OM𝑘−1) of the previous round. Once a client 𝐶 𝑗 ∈ 𝐶 receives the
model (represented by some weight vector𝑤) from the server, it starts locally training a new model
IU𝑗,𝑘 on her private data 𝐷 𝑗,𝑘 . It outputs this individually trained model (represented by some weight
vector 𝑎 𝑗 ) to the server. The server aggregates the individual updates IU𝑗,𝑘 to get a new output model
OM𝑘 represented by 1

|𝐶 |
∑

𝑗∈ 𝐽 𝑎 𝑗 . The process continues until a final output model OM𝑡 is reached
and then published to all clients.

Secret sharing. In contrast, in PrivatEyes, as shown in Fig. 1, a client 𝐶 𝑗 no longer sends its update
𝑎 𝑗 in plain to an aggregating server but instead encrypts it as a secret sharing for 𝑛 servers. That is,
for each of the 𝑛 servers 𝑆𝑖 , a random number [𝑎 𝑗 ]𝑖 (1 ≤ 𝑖 ≤ 𝑛) is selected such that 𝑎 𝑗 =

∑𝑛
𝑖=1 [𝑎 𝑗 ]𝑖

holds; [𝑎 𝑗 ]𝑖 belongs to a previously agreed finite field, such as Z𝑞 = 0, 1, ..., 𝑞 − 1, for some prime
number 𝑞 (e.g. a common size is 𝑞 ≈ 2127). The client then sends [𝑎 𝑗 ]𝑖 to 𝑆𝑖 , i.e. each server gets
only one share of the secret update 𝑎 𝑗 . As long as at least one server, say 𝑆2, is honest and does
not reveal its share [𝑎 𝑗 ]2, MPC guarantees that the other servers cannot gain any information about
𝑎 𝑗 . E.g., as shown in Fig. 1, the client 𝐶1 wants to share 𝑎1 = 3 as an element of a finite field Z23
with three servers 𝑆1, 𝑆2, 𝑆3. Then 𝐶1 chooses (arbitrarily) three numbers [𝑎1]1, [𝑎1]2, [𝑎1]3 such that
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( [𝑎1]1 + [𝑎1]2 + [𝑎1]3)mod 23 = 𝑎1 = 3. For example, [𝑎1]1 = 5, [𝑎1]2 = 17 and [𝑎1]3 = 4 with
(5 + 17 + 4)mod 23 = 26mod 23 = 3. Even if 𝑆1 and 𝑆3 collude and exchange their shares, the
unknown share of 𝑆2 makes all possible values of 𝑎 𝑗 ∈ Z23 equally likely from the perspective of 𝑆1
or 𝑆3, i.e. no information on the actual 𝑎 𝑗 is leaked.
Once each server 𝑆𝑖 has received a share [𝑎 𝑗 ]𝑖 from each client 𝐶 𝑗 , the servers start an MPC protocol
to compute a sharing of the new global model represented by a weight vector𝑤 . At the end of the
MPC computation, each server 𝑆𝑖 has a share [𝑤]𝑖 . As before, if only one server is honest, the MPC
protocol guarantees that no server gets any information on𝑤 and that𝑤 has been computed correctly.
Otherwise, the protocol aborts. Finally, all servers return their shares [𝑤]𝑖 to all clients 𝐶 𝑗 and each
𝐶 𝑗 can locally reconstruct𝑤 =

∑𝑛
𝑖=1 [𝑤]𝑖 by simply adding up the shares.

Clients provide their inputs by following the protocol of Damgard et al. [Damgård et al. 2012]
(simplified above). It guarantees along with checks carried out in the MPC protocol that servers
are forced to use the inputs (the shares) given to them by the clients when performing the MPC
protocol. I.e., even malicious servers cannot change the client inputs. Hence, if an output is produced
by the MPC computation, this output is (mathematically provably) guaranteed to correspond to the
inputs provided by the clients; otherwise, no output is produced. For an efficient aggregation of the
individual model updates, the MPC protocol evaluates an adaptive optimisation protocol [Reddi
et al. 2020] that has been shown to adapt the model updates to the clients’ heterogeneous gaze data
distribution [Elfares et al. 2022] while only relying on low-computational operations on secret values
for efficient privacy-preserving training (a main challenge in MPC-based protocols). Following the
classical FL approach, the FL training is repeated until a certain number of rounds is reached and
the final output model has been generated. For more details on the MPC protocol, formal security
and privacy guarantees, and security proofs please refer to [Damgård et al. 2016, 2012; Keller et al.
2018].

Security guarantees of PrivatEyes. PrivatEyes provides security guarantees even if only one server
(out of 𝑛 servers) is honest, i.e., follows the protocol and does not collude with other servers or
clients:

(1) If servers do not use the input provided to them by (honest) clients the protocol aborts.
(2) If servers deviate from the prescribed protocol the protocol aborts.
(3) If an output is produced by the protocol, then this is guaranteed to be the correct global model,

i.e., the gaze estimation model that would have been obtained if all servers were honest and used
the inputs provided to them by the clients.

(4) A server gains no information from the gaze data of a (honest) client beyond what is available
publicly.

4.2 DualView: Gaze-specific Attack
Gaze estimation models are susceptible to a large number of vulnerabilities and attacks (c.f. Section 3).
Nonetheless, such attacks have never been studied in the gaze community. In this work, we present a
new gaze-specific attack, which we call DualView, to evaluate the amount of information leakage
from gaze estimation models and their training process.

Threat Model. We assume an adversary A that can use all available knowledge to determine
properties of the private training data sets used by the clients. The knowledge of A contains
information Pub that is publicly available, e.g., the final output model or the model architecture. But
it can also contain leaked knowledge Leak that the adversary gathered from the training process, e.g.
by colluding with some of the servers. In particular, depending on the actual training scheme and
the number of dishonest parties, the knowledge available to A differs. For example, in centralised
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Fig. 2. DualView demonstrates the amount of gaze-specific information leakage by reconstructing
the user’s appearance (View1: how the user looks like) as well as inferring the corresponding gaze
distribution (View2: where the user is looking) of the private dataset used to train a target gaze
estimation model.

FL an adversary that colludes with the aggregating server sees all individual model updates IU and
can use these updates in his attack. In contrast, in PrivatEyes , due to the use of MPC (c.f. Fig. 1),
an adversary that colludes with one (or up to 𝑛 − 1) servers does not get any information on the
individual updates IU and can, therefore, not use this information in the attack.

Goal of the attack. For our attack, we assume the adversary A wants to reconstruct private training
data (given his available information from Pub and Leak) or some property of the training data (e.g.
its gaze distribution). We then determine the success of A in Section 5.3 by measuring how much
his reconstruction differs from the original training data (w.r.t. the ground truth). Naturally, if a gaze
estimation training scheme like centralised FL leaks information, then this information leakage likely
contains gaze-related information. Unfortunately, this is not the only information one can usually
deduce from the leaked data, e.g. from a model update. For example, a model update usually also
contains appearance-related information (although appearance was not the main objective of the
training). Hence, in order to get a more complete picture of the overall information leakage of a gaze
estimation training scheme like centralised FL or PrivatEyes, we need an attack that can successfully
deduce information about a user’s appearance (i.e. view1: how the user looks like) as well as the
respective gaze angle distribution (i.e. view2: where the user is looking) in the respective training set.
Our attack DualView (cf. Fig. 2) addresses these two objectives.

Our attack DualView. Technically, DualView consists of a generative adversarial network (GAN)
that trains a generator 𝐺 and a discriminator 𝐷, where the generator takes a random latent vector
as input and generates face/eye images that look (superficially) authentic to human observers with
realistic characteristics. The discriminator evaluates the reconstructed images by distinguishing the
reconstructed images from the true data distribution. The generator takes a random input (sampled
from a latent space) as a seed and is trained until it succeeds at fooling the discriminator via
independent backpropagation with a training loss composed of the Wasserstein loss and a diversity
loss [Yang et al. 2019] (to generate a large output distribution for our domain-agnostic reconstructed
images). As a training dataset, we use a high-quality reference dataset which is publicly available,
namely GazeCapture or LPW datasets, for face and eye images respectively. We choose these datasets
since they come with a large number of participants, e.g. 1,474 in the case of GazeCapture, and
therefore result in a generator that can reproduce realistic reconstructions of training sets.
Note that so far our attack only used public information, i.e. the publicly available data sets Gaze-
Capture and LPW. In particular, DualView generates the GAN independently of the specific training
scheme and its leakage Leak. We next want to explain how DualView uses the additional knowledge
Leak gained from the gaze estimation training (e.g. by corrupting servers or clients) to reconstruct
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the training data sets. Generally, the knowledge in Leak will contain some model updates, e.g. the
individual model updates revealed in centralised FL. For the exact form of Leak in the different
training schemes we refer to Section 5.3. Now DualView checks how accurately such a model
from Leak can determine the gaze angle on generated images by 𝐺 . This leads to a loss function
𝐿gaze. Similarly, DualView determines a loss 𝐿prior (the discriminator loss that penalises inauthentic
reconstructed images) and an appearance loss 𝐿appearance (a cross-entropy loss). Overall he gets a total
loss function1: 𝐿total = 𝛼𝐿prior + 𝛽𝐿gaze + 𝛾𝐿appearance. The gaze loss is then fed to a simple multi-layer
perception (MLP)-based autoencoder that regresses it to the corresponding gaze direction distribution.
In addition, a kernel density estimation (KDE) function derives a probability density function to
compute a Kullback-Leibler (KL) divergence in order to evaluate the predicted gaze distribution.
Now generally, Leak contains more than a single model, e.g. it contains all individual model updates
IU from all rounds in centralised FL. We introduce these different model updates in Leak iteratively.
Namely, DualView first optimizes w.r.t. the first round model update. The resulting reconstructed
images are then (re-)introduced as auxiliary knowledge following [Zhang et al. 2020a], i.e. after
passing them through an auxiliary knowledge distillation network with dilated convolution layers
that insert gaps between the kernel elements (i.e. pixel skipping) to cover a larger receptive field and
therewith provide a generic eye/full-face skeleton to the generator. Similarly, all available model
updates in Leak (and the final output model in Pub) are used by the MLP-based autoencoder as
auxiliary knowledge.
Finally, the adversary receives a reconstruction of the private training set that agrees best with his
available knowledge from Pub and Leak. We remark again that the quality of this reconstruction of
course depends on Leak and that a DualView instance which can use all individual model updates
and all round-wise output models (i.e. in the case of centralised FL) will generally produce a more
accurate reconstruction than a DualView instance which can only use the output models without
individual updates (i.e. in the case of PrivatEyes).

5 EXPERIMENTS
To evaluate our method, we use several different datasets to cover the different gaze estimation
setups and to prove the advantage of PrivatEyes and our privacy guarantees in real-world scenarios.
The datasets cover different appearances (ethnicities, genders, glasses, and make-up), illumination
conditions (indoor and outdoor), gaze distributions, head poses, modalities (images and videos with
eyes or full-faces), and recording setups (remote vs. near-eye).

We mainly conducted experiments on the MPIIGaze [Zhang et al. 2015], MPIIFaceGaze [Zhang
et al. 2017c], and NVGaze [Kim et al. 2019] datasets. The MPIIGaze and MPIIFaceGaze datasets
contain 213,659 eye and full-face images, collected in the wild from 15 participants over the course
of several months. We used the gaze estimation models originally proposed in both works and trained
them using PrivatEyes. The models take eye/full-face images as input and regress them to gaze
directions in normalised space. We conducted further experiments for near-eye gaze estimation on
the NVGaze [Kim et al. 2019] dataset, with 32 participants recorded by a near-eye infrared camera,
along with their proposed gaze estimation models. Furthermore, we used GazeCapture [Krafka et al.
2016], the gaze estimation dataset with the largest number of participants (1,474), (1) along with
its corresponding iTracker CNN, to further analyse the scalability of PrivatEyes and (2) to train
our DualView attack for full-face inputs. Similarly, the LPW [Tonsen et al. 2016] dataset, which
contains videos of 22 participants recorded by a head-mounted eye tracker was used to train the
DualView attack for eye inputs. We used the MP-SPDZ [Keller 2020] framework with Overdrive

1𝛼 , 𝛽 , and 𝛾 are weighting constants selected according to a hyperparameter search. E.g. for attacking full-faces, 𝛼 = 10,
𝛽 = 6, and 𝛾 = 4.
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LowGear [Keller et al. 2018] (the state-of-the-art maliciously secure MPC protocol for a small
number of servers) to implement PrivatEyes and the ML-Doctor [Liu et al. 2022a] framework to also
perform standard ML attacks (c.f. Appendix D) in addition to our new attack DualView.

5.1 Baseline methods
We compared our training approach PrivatEyes (cf. Section 4.1) with three baselines and evalu-
ated them in terms of gaze estimation error, robustness to gaze data leakage attacks, client-server
communication, and computational complexity:

• Data centre training: In this approach, the clients’ datasets are collected in one central server
storage. The model is directly trained on all samples and, hence, data-sharing concerns arise.

• Adaptive FL: This is the state-of-the-art centralised federated learning-based gaze estimation
training proposed in [Elfares et al. 2022] in which the individual model updates are treated as
pseudo-random gradients for aggregation.

• Generic MPC: The state-of-the-art actively secure MPC approach (without FL) from [Keller et al.
2018] where the clients provide the inputs in a secret-shared form and the servers run the whole
training as an MPC protocol (cf. Section 2). In particular, this approach uses only MPC and not
federated training like PrivatEyes.

5.2 Gaze estimation performance
Gaze estimation performance was calculated as the mean angular error between the predicted and
ground-truth gaze directions. As shown in Tab. 1, for data centre training, the gaze estimation model
yielded the best performance on all datasets. This is expected given that this training approach
can have direct access to original images. Of course, privacy in the data centre training relies on
the trustworthiness of the central server—if the server is dishonest, all input data gets leaked (c.f.
Section 4.1). For adaptive FL and PrivatEyes, we used the same number of rounds, epochs, and
hyper-parameters as in [Elfares et al. 2022]. As expected (c.f. Section 4.1), the performance of
adaptive FL and PrivatEyes is identical. In addition, we investigated how the performance loss
between data centre on the one side and adaptive FL and PrivatEyes on the other side varies from
client to client. For example, Fig. 8 shows a random sample of 10 clients with the respective errors.
In general the gaze estimation fairness (i.e. the difference between the minimum and maximum gaze
angular error across all clients) is 1.3◦, 1.5◦, 1.0◦, and 1.5◦ for MPIIGaze, MPIIFaceGaze, NVGaze,
and GazeCapture respectively. Finally, we were not able to run the full generic MPC benchmark for
the performance, since these protocols are far too inefficient to handle realistic data sets and realistic
numbers of clients (c.f. Section 5.4)2.

Our evaluation in Tab. 1 also indicates how our approach PrivatEyes scales with the number of
clients and the size of the training sets. From the four data sets in Tab. 1, MPIIGaze, MPIIFaceGaze,
and NVGaze datasets represent data sets with a small number of participants (15 to 32), while
GazeCapture covers a large number of participants (1,474) and therewith follows classical cross-
device federated training conventions (which usually come with ≥ 100 clients [Kairouz et al. 2019]).
In line with [Kairouz et al. 2019], the performance gap between data centre training/generic MPC
and PrivatEyes/adaptive FL becomes smaller with a larger number of clients and larger datasets.

2The main reason for this lack of efficiency is that operations common in ML, e.g. comparisons, polynomial evaluations and
generally floating point operations, are not naturally supported by the MPC protocols, which are optimised for arithmetic
operations over finite fields. This leads to costly translations and often comes with a loss in precision and therefore a loss in
the model performance. However, theoretical considerations ensure that generic MPC will perform as good as data centre
training while runtime was estimated by only running the main operations and generalising them to the entire training.
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Data Centre/Generic MPC Adaptive FL PrivatEyes

MPIIGaze 6.3◦ 7.6◦ 7.6◦

MPIIFaceGaze 6.2◦ 7.4◦ 7.4◦

NVGaze 0.8◦ 2.1◦ 2.1◦

GazeCapture 4.0◦ 4.7◦ 4.7◦

Table 1. Mean angular error for different gaze estimation datasets.

5.3 DualView performance
In this section, we want to compare different training schemes, i.e. data centre training, adaptive
FL, PrivatEyes and generic MPC, w.r.t. their privacy leakage. For the two federated approaches,
we consider a training with 𝑡 = 10 rounds. To simplify the evaluation we further assume that
𝐶 = {1, . . . , 𝑁 }, i.e. that all clients are chosen in each round.

We assume that at least one and at most 𝑛 − 1 servers (if 𝑛 ≥ 2) are corrupted. Hence, the data
centre training is completely insecure and the one corrupted central server leaks all private training
data. For adaptive FL, the corrupted server leaks all individual model updates and all output models
in all rounds, i.e. Leak𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝐹𝐿 = {IU𝑗,𝑘 ,OM𝑘 : 1 ≤ 𝑘 ≤ 𝑛}. Furthermore, we assume that at least
one client is corrupted. Recall from Section 4.1 that in PrivatEyes each client receives the round-wise
output models and hence a corrupted client leaks these output models to the adversary. However,
the individual models (of an honest party) are only send in shared form in PrivatEyes and therefore
no corrupted server or client can deduce information about them. Thus, in PrivatEyes, we have
Leak𝑃𝑟𝑖𝑣𝑎𝑡𝐸𝑦𝑒𝑠 = {OM𝑘 : 1 ≤ 𝑘 ≤ 𝑡}. Finally, in generic MPC, no information is leaked apart from
public information, e.g. the final output model OM𝑡 .
We then run three instances of DualView: (i) against adaptive FL, where DualView uses Leak =

Leak𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝐹𝐿; (ii) against PrivatEyes , where Leak = Leak𝑃𝑟𝑖𝑣𝑎𝑡𝐸𝑦𝑒𝑠 contains only all roundwise
output model updates; (iii) against generic MPC, where DualView receive no non-public information,
i.e. LeakMPC = {} and DualView stops once he used all publicly available information for the
reconstruction. In each of the three cases DualView outputs a reconstruction (i.e. View1 and View2)
of the training set of each client at each round. We then evaluate the reconstructions in terms of:
• Appearance similarity: A user study (N = 60 respondents) was conducted to see if users could

correctly map the reconstructed images to the corresponding participant.3 Additionally, the par-
ticipants were asked to rate the similarity of a reconstruction with a qualitative visual score. See
Appendix A for more details.

• Pixel-wise similarity: A Peak Signal-to-Noise Ratio (PSNR) was used to quantify the fluctuation
between the original (private) image and the corresponding reconstructed image. Higher PSNR
scores indicate higher similarities.

• Gaze direction similarity: A mean angular error (MAE) was calculated to capture the gaze
direction similarity between the ground truth and the reconstructed images.

• Gaze distribution similarity: A KL-divergence is used to calculate the statistical distance between
the ground truth and the inferred gaze probability distributions of all images used to train a target
model. A value of 0 indicates identical quantities of information (i.e. identical gaze directions).
Our results for the MPIIFaceGaze dataset are included in Tab. 2 and Fig. 3. Some additional results

are contained in Appendix B for the remaining datasets. Note that the same performance behaviour
can be seen across all datasets (c.f. Appendix B). As expected our evaluation shows that more
3A re-identification network could serve as a metric for appearance similarity. However, we opted for the user study to avoid
bias.
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Fig. 3. Sample reconstruction results. (A) Reconstructed face/eye images of the same participant for
the different baselines (Data centre is the ground truth due to the direct access to the raw data). (B)
Effect of the number of training samples per round. (C) Using previous reconstructions as auxiliary
knowledge against adaptive FL training affects the reconstruction. (D) Effect of the attack loss function,
e.g. transferring the gaze of a victim to a random face (1st row) and transferring the appearance of a
victim to a random gaze (2nd row) in adaptive FL.

leaked information naturally leads to better reconstructions of the training set, i.e. the data leakage
increases from generic MPC and PrivatEyes to adaptive FL and data centre training. Surprisingly,
PrivatEyes reaches an on-par privacy level as generic MPC which is (at least concerning privacy)
as good as one might hope for, since for generic MPC an attack can only use publicly available
information, namely the final output model. This means that the knowledge of several intermediate
output models from different rounds does not really improve the ability of the adversary. In other
words, the aggregated intermediate output models contain (already in our evaluation setup with only
15 clients) only a small amount of individual training data.

Moreover, we observe that a larger number of rounds, and hence more leakage, results in more
accurate appearance reconstructions (re-identification, visual score, and PSNR) given that the user’s
appearance stays the same over all training sets of a client. However, the later updates only improve
the reconstructions slightly (if at all). The reason is that the gaze estimation model converges, i.e.
towards the last round(s), less information could be leaked from the target models as the effect of
the training data on the model updates becomes small, and the multiple aggregation steps in FL
dissipate individual information (c.f. Fig. 9). Figure 3-C shows the strong effect of the earlier updates
introduced as auxiliary knowledge compared to a reconstruction (w/o aux.) that only relies on the
last round update.

For the gaze-related properties (MAE, KL), DualView tries to reconstruct the gaze angle distri-
bution used during training. However, in contrast to appearance, the gaze angles in the 𝑘-th round
training set 𝐷 𝑗,𝑘 of a client 𝐶 𝑗 do not (necessarily) depend on the previous training sets. In particu-
lar, the previously learned models (if introduced as aux.) can only slightly improve the final gaze
reconstruction of 𝐷 𝑗,𝑡 as they contain little information on 𝐷 𝑗,𝑡 due to the described convergence
issue. Nonetheless, the auxiliary knowledge provides information about which parameters already
converged. For instance, in a late round, some training samples will no longer update the gaze
estimator gradients (i.e. have a negligible effect on the training) while the previous model updates (if
introduced as aux.) provide information about which parameters already converged. DualView uses
this knowledge by allowing weights corresponding to already converged parameters to nevertheless
contribute to the reconstruction (c.f. Appendix C).

With respect to scaling Fig. 3-B shows the effect of the number of training samples per round
on privacy. In general, a smaller number of training samples per round (i.e. overfitting) leaks more
information with a slower convergence (i.e. more training rounds). We also investigate the effect
of our attack loss by replacing the total loss function from Section 4.2 by 𝐿gaze or 𝐿appearance. For
example, Fig. 3-D shows how the adversary can reconstruct (transfer) the gaze of some target client
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Re-identified Visual score PSNR MAE KL
Data centre 15/15 100% max. 0 0
Adaptive FL 15/15 83% 19.8 8.1 0.201
PrivatEyes 0/15 7% 5.1 10.6 0.269
Generic MPC 0/15 3% 5.0 10.8 0.273

Table 2. DualView performance on the MPIIFaceGaze dataset.

Data Centre Adaptive FL PrivatEyes Generic MPC

Runtime ∼ 357.0 s ∼ 357.2 s ∼ 411.9 s ∼ 10 months

Communication ∼ 909 MB ∼ 1 MB/round ∼ 7 MB/round ∼ 3840 MB
Table 3. Training runtime and communication for the baselines vs PrivatEyes on MPIIGaze on a
NVIDIA V100 GPU. Generic MPC and PrivatEyes both use three servers; adaptive FL and data centre
both use one server and 10 training rounds.

(victim) to some randomly chosen face, and vice versa. Although the advantage of PrivatEyes over
adaptive FL is larger when more private information is leaked (i.e. with our proposed total loss), such
effects could be of independent interest (e.g. for image forensics such as Deepfakes [Westerlund
2019] or gaze data synthesis [Qin et al. 2023]).

In summary, since PrivatEyes does not leak any information on individual updates, attacks can
only use the aggregated models at each round. This represents a key advantage compared to i)
data centre training which requires access to the input images and ii) adaptive FL which allows
access to both the individual model updates (IU) as well as the output model (OM) of each round.
Results of other well-established data leakage attacks further confirm our findings (c.f. Appendix D).
Finally, PrivatEyes reaches an on-par privacy level as generic MPC, which comes with optimal
privacy guarantees (under our assumption that one server is honest). However, generic MPC remains
inefficient in real-world applications, e.g. gaze estimation (c.f. Section 5.4 below).

5.4 Efficiency
While the previous results suggest that generic MPC achieves slightly better performance and privacy
than PrivatEyes, this does not imply that generic MPC can be successfully used in practice. The
main obstruction to employing generic MPC is that it can currently not be implemented efficiently.
Fortunately, our combination of FL and MPC does not suffer the same disadvantage. The reason is
that the MPC computation in generic MPC is much more complex than in our FL-based scheme
PrivatEyes. In PrivatEyes, the MPC protocol is dominated by additions of the (shares of) the individual
updates. These additions can be computed locally (i.e. without communication among the servers)
and therewith efficiently by each server. In contrast, a generic MPC evaluation must additionally
handle all the non-linear training operations, which in PrivatEyes are done locally by the clients.
This includes e.g. approximations of activation functions by high-degree polynomials or derivatives.
By design of the MPC protocols, these non-linear operations lead to a significant communication
overhead among the servers. For instance, the first convolution layer on the MPIIGaze CNN requires
∼900𝑘 and ∼4,000𝑘 communicated 128-bit values per iteration for the forward and backward pass,
respectively (with a total of ∼ 30,000𝐾 for the entire CNN). As a result, the estimated training
time for three parties on a single computer with no network delay is ∼ 10 months and 3840 MB
communication for training and ∼ 4 hrs for inference. In real-world setups, e.g. over the Internet,
network delays and bandwidth restrictions further slow down the training (significantly). Overall, the
generic MPC approach is currently not ready for real-world applications in gaze estimation given
its runtime, as shown in Tab. 3. While PrivatEyes is much more efficient it nevertheless comes with
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a small efficiency loss compared to adaptive FL, since the clients need to send one share of their
individual update to each server (plus some additional communication needed to get an actively
secure scheme as described in Section 4.1). For instance Table 3 shows that PrivatEyes for 3 servers
comes with an approx. factor 7 communication overhead compared to adaptive FL, which is well in
accordance with theory (it results from sending 3 shares plus authentication for active security). The
communication scales (just as generic MPC) linearly in the number of servers. The runtime on the
other hand is more dominated by the local training of the clients and not affected strongly by the
communication overhead. Please note also, that shares can be sent in parallel to all servers (and back)
and hence the input and output phase in adaptive FL and PrivatEyes have similar runtime (although
more data is sent in PrivatEyes). We generally think that the small absolute increase in runtime
and communication is justified given the significantly better privacy guarantees of PrivatEyes over
adaptive FL. Finally, data centre training needs significantly more communication since all the raw
training data has to be sent to the central server.

In summary, we have seen that our combination of FL and MPC in PrivatEyes has significant
advantages compared to all other currently available gaze estimation training approaches (on dis-
tributed data sets). It comes with (i) good gaze estimation performance (which is only slightly worse
than data centre training and equal to centralized FL approaches), (ii) reasonable computational and
communication costs, (iii) strong privacy guarantees that are almost optimal and significantly better
than centralised FL approaches and data centre training.

6 DISCUSSION
In the following, we discuss the potential of PrivatEyesalong three axes: the privacy guarantees for
the gaze data, the fairness of the gaze estimator, and the feasibility of our trust assumption.

Privacy guarantees for the gaze data. FL structurally prevents access to the client’s raw data through
data minimisation (i.e. the individual model updates). In addition, FL facilitates data-stewardship to
ensure that clients control and approve of how their data will be used and have governance over their
data, hence, transparency and consent principles are applied [Bonawitz et al. 2022]. Unfortunately,
our evaluation in Section 5 shows that FL is still vulnerable to attacks which can deduce very
accurate reconstructions of the training data from the individual model updates. PrivatEyes does
not leak the individual model updates and therefore reaches a far better privacy level. In particular,
PrivatEyes provides provable privacy guarantees as long as at least one server remains honest (see
Section 4 for details). Other approaches with similar privacy guarantees like generic MPC, are
currently too inefficient to be applied in real-world gaze applications.

Fairness of the gaze estimator. In collaborative approaches, e.g. FL or PrivatEyes, concerns about
model fairness are magnified due to the heterogeneous data distribution across clients. Nonetheless,
our experiments (Section 5.2) show that (i) PrivatEyes is able to adapt to the different individual
model updates and yields good performance for each client (Fig. 8), (ii) increases the generalisation
capability of gaze estimators, and (iii) maintains a high scalability performance. PrivatEyes, therefore,
incentivises collaborative training (a main goal of our paper) while preserving data privacy.

Trust and dishonest majority. Trust plays a crucial role in shaping clients’ willingness to share
information, such as model updates. The evolving capabilities of AI and adversarial attacks, as
discussed in Section 3, have given rise to the ’trust crisis’ [Yu et al. 2017]. Addressing this issue,
[Steil et al. 2019] conducted a comprehensive survey on users’ attitudes towards sharing their eye
data. The study revealed that clients are more inclined to share their data if the co-owner, e.g. a
server in PrivatEyes, belongs to entities perceived as trustworthy, such as governmental, healthcare,
education, or research institutes. Conversely, there is a lack of trust in international and profit-oriented

14



PrivatEyes ETRA ’24, June 04–07, 2024, Glasgow, UK

organizations. Interestingly, clients are more open to sharing their data in aggregated forms, e.g.
output models in PrivatEyes, while being reluctant to share raw data. Hence, PrivatEyes, specifically
guided by the dishonest majority assumption, emerges as a solution for (i) ensuring the trustworthy
processing of eye data for any service provider (i.e. server) if only one server (i.e., the sole honest
server) is affiliated with trusted entities and (ii) aligning with clients’ trust dynamics.

Limitations and future work. One of the major challenges of collaborative gaze estimation research is
to transfer conventional gaze estimation methods to decentralised datasets. For example, the selection
of hyper-parameters and their optimisation (i.e. AutoML [Kohavi and John 1995]) currently does
not have an efficient distributed counterpart (especially for secure setups). Furthermore, PrivatEyes,
similar to other FL paradigms (e.g [Elfares et al. 2022]), considers a supervised gaze estimation task
where data annotation is assumed to be available at each client. Applying FL (or even PrivatEyes) to
semi-supervised or unsupervised learning (i.e. [Jindal and Manduchi 2022; Yu and Odobez 2020])
also remains an open problem.

7 CONCLUSION
We presented PrivatEyes—the first privacy-preserving training approach for appearance-based gaze
estimation methods that combines FL with MPC. Our evaluation shows that PrivatEyes reaches the
same gaze estimation performance as the currently best (non-secure) distributed training scheme
[Elfares et al. 2022], is domain-agnostic (i.e. can be used with any gaze estimation model and dataset),
and can scale to a large number of clients, with a rather moderate efficiency overhead compared to
centralised FL. Finally, PrivatEyes provides strong security guarantees (cf. Section 4). It then reaches
almost optimal privacy guarantees, if only one out of 𝑛 servers is honest, and is therewith significantly
better than centralised FL and data centre training (cf. Section 5). Overall, PrivatEyes currently
provides the most practical and private gaze estimation training on distributed datasets. It hits a
“sweet spot” in terms of privacy, model accuracy, and performance.
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APPENDIX
A QUALITATIVE EVALUATION
To get the qualitative assessment of the DualView reconstruction results, a user study was conducted
(N = 60 - each image was shown to 3 participants) on a randomly-picked subset of 120 images
covering all cases discussed in Section 5. Participants were asked to assess each reconstructed image
in terms of similarity and re-identification. An example of the survey is shown in Fig. 4 and Fig. 5.

Fig. 4. For similar ground truth (left) and reconstructed images (right) from the 3 different datasets,
participants were asked the following questions:
A.1. Do both images represent the same person? (Yes/No)
A.2. On a scale from 1 to 10, how would you rate the overall similarity of both images? (Very similar to
very dissimilar)

Fig. 5. For similar reconstructed images (left), participants were asked to map the full-face/eye image
to the corresponding ground-truth clients.

B ADDITIONAL RESULTS
In Tab. 4 and Tab. 5, we show the DualView performance on the remaining datasets, namely
MPIIGaze and NVGaze. The mean angular error (MAE) has been calculated with gaze estimators
that already have MAE of 6.3, 6.2, and 0.8 for MPIIGaze, MPIIFaceGaze, and NVGaze, respectively.

Re-identified Visual score PSNR MAE KL
Data centre 15/15 100% max. 0 0
Adaptive FL 15/15 80% 18.3 7.8 0.198
PrivatEyes 0/15 4% 4.8 10.1 0.255
Generic MPC 0/15 5% 4.8 9.9 0.257

Table 4. DualView performance on the MPIIGaze dataset.
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Re-identified Visual score PSNR MAE KL
Data centre 32/32 100% max. 0 0
Adaptive FL 32/32 92% 12.4 2.0 0.167
PrivatEyes 0/32 13% 4.1 6.7 0.181
Generic MPC 0/32 10% 4.0 6.6 0.180

Table 5. DualView performance on the NVGaze dataset.

In Fig. 6 and Fig. 7, we show additional examples for reconstructed face and eye images, respec-
tively, covering different participants (i.e. appearances) and gaze directions. As previously proven by
our evaluation metrics (c.f. Section 5), PrivatEyes and generic MPC leak less information in compar-
ison to adaptive FL. The resulting faces/eyes remain nonetheless realistic due to the discriminator
loss in DualView.

Fig. 6. Additional examples of faces reconstructed by DualView from the MPIIFaceGaze dataset.
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Fig. 7. Additional examples of eyes reconstructed by DualView from the NVGaze dataset.

Fig. 8. Mean gaze estimation error for 10 randomly-selected participants from MPIIFaceGaze.

C CONVERGENCE EFFECT ON PRIVACY
In Fig. 9, the convergence effect can be seen from the left figure (i.e. the first training round) to the
middle figures (i.e. a later training round) where some data samples no longer contribute to updating
the trained model (gradients). Without aux. knowledge (middle), the prediction takes into account
all training samples that previously contributed to the training of the entire model regardless of the
current data of the target model. Hence, adding the previous model updates as aux. knowledge (right)
enhances the reconstruction (i.e. KL-divergence).
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Fig. 9. Example of the ground-truth vs predicted gaze data distribution of the normalised gaze
directions with KL-divergence = 0.198 (left), KL-divergence = 0.260 (middle), and KL-divergence =
0.202 (right).

D ROBUSTNESS TO OTHER DATA LEAKAGE ATTACKS
We further investigated the potential information leakage by other existing generic attacks using the
ML-doctor [Liu et al. 2022a] framework which benchmarks state-of-the-art attacks on ML models.

Membership inference attacks. Membership inference attacks [Shokri et al. 2017] aim to determine
if a particular data sample was used to train the model. For instance, in privacy-sensitive gaze
applications (e.g. mental disorders detection [Higuchi et al. 2018; Li et al. 2022; Paletta et al. 2020]),
this membership knowledge could imply the inclusion of an individual in a certain group (e.g. mental
disorder). To perform the attack the adversary constructs a shadow dataset to train a shadow model
on the same task (gaze estimation). In addition, the adversary trains a binary classifier (member or
non-member) by querying the shadow model on training and out-of-training shadow datasets. Finally,
target images are fed to the target model (the gaze estimator) and posteriors are compared to the
binary classifier. For all datasets, the attack correctly identified more than 90%(first round) to 74%
(last round) of the clients from individual updates (adaptive FL). For output models (PrivatEyes),
for the MPIIFaceGaze dataset, membership inference was less successful as the number of rounds
increased, i.e. the average accuracy dropped from 40% (first round) to 33% (last round) correctly
determined samples. Moreover, for the MPIIGaze dataset, the attack’s accuracy dropped from 33%
(first round) to 13% (last round). Similarly, for the NVGaze dataset, the attack’s accuracy dropped
from 37% (first round) to 12% (last round). Therefore, PrivatEyes reduces the gaze information
leakage for membership inference attacks significantly due to the inaccessibility of individual updates
and the information obfuscation during the aggregation step.

Attribute inference attacks. Attribute inference attacks [Melis et al. 2019] exploit additional knowl-
edge gained by ML models, which is not needed for the training task, to infer private attributes about
the data. This attack is similar to membership inference attacks but substitutes the binary classifier
with the attack model trained on the to-be-inferred attributes4. We opted for the simple attack of
predicting the gender of the participants whose data was used to train the gaze estimation model.
Consequently, the attack model is pre-trained on the UTKFace dataset [Zhang et al. 2017a]. For all
datasets, the attack correctly predicted more than 95% (first round) to 65% (last round) of clients’
genders from individual updates. From output models, the attack correctly predicted the gender of
5/15 (first round) to 2/15 (last round) participants for MPIIFaceGaze, 3/15 to 0/15 for MPIIGaze,
and 10/32 to 1/32 for NVGaze.
4In DualView, the adversary reconstructs the input image, the gaze distributions, and the corresponding loss values which
could later be fed to attribute classifiers.
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